Frequency effects and prosodic boundary strength

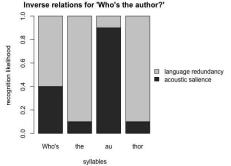
Tina Bögel

University of Konstanz

w.i.p.

in cooperation with Alice Turk, University of Edinburgh

Saarbrücken, 22.1.2020


Overview

- The Smooth Signal Redundancy Hypothesis
- Experiment on frequency effects with respect to
 - the placement of syntactic boundaries
 - the strength of the resulting prosodic boundaries
 - ightarrow durational measurements of the boundary-related intervals
- Frequency effects and grammar architecture
- Conclusion

The smooth signal redundancy hypothesis (SSRH)

- Often no reliable cues to indicate word boundaries in spoken language
- Assumption: prosodic boundary structure is planned to achieve SSR (Aylett and Turk 2004, Turk 2010)
- $\rightarrow\,$ make the recognition of each word in an utterance equally likely
- $\rightarrow\,$ prosodic boundary strength assumed to inversely relate to language redundancy, i.e., non-acoustic information:
 - likelihood syntactic structure
 - lexical word frequency
 - word bigram frequency
 - ...
 - More predictable elements require "less explicit signal information" than less predictable elements for successful recognition (Lindblom 1990)

Inverse relation

(Aylett 2000, Aylett and Turk 2004)

- $\rightarrow\,$ Inverse, complementary relationship between language redundancy and acoustic redundancy
- ightarrow Recognition likelihood spread evenly throughout an utterance
- \Rightarrow achieve maximal understanding with minimal effort

(Some) previous work

- More likely to pronounce (phrase-medial) syllables with low language redundancy more clearly (Aylett (2000), Aylett & Turk (2004, 2006))
- Jurafsky et al. (2001): highly frequent function words and function words with a high probability given context are more likely to be acoustically reduced
- Bell et al. (2009) showed an effect on word duration given the following material
- Pluymaekers et al. (2005) showed an effect of bigram frequency on stem and suffix duration; they also showed an effect of repetition
- Gahl & Garnsey (2004) showed that syntactic predictability can also affect segment and pause durations with transitive verbs
- Watson et al. (2006) showed that the likelihood of intonational boundary insertion was greater when the presence of a word's dependent was optional (less predictable) than when it was judged to be obligatory (more predictable)

Previous work

In conclusion, previous work showed that increased

- lexical frequency (e.g., Jurafsky et al. 2001)
- bigram frequency (e.g., Aylett 2000, Aylett and Turk 2004, 2006, Pluymaekers et al. 2005, Bell et al. 2009)
- syntactic predictability (e.g., Gahl and Garnsey 2004, Watson et al. 2006)

led to a reduction of word/segment duration, and influenced the placement of syntactic boundaries.

Clearly demarcating word boundaries \rightarrow more salience

Hypothesis

- Inverse relationsip between language redundancy and acoustic salience should hold for larger prosodic boundaries
- \rightarrow Stronger prosodic boundaries are expected to occur where language redundancy is low, e.g., within infrequent stretches of speech
 - SSRH would thus predict a (gradient) correlation between boundary strength and language redundancy (e.g. greater final lengthening, initial lengthening, initial strengthening, F0 reset, etc., given low language redundancy)
- $\rightarrow\,$ Has not been tested experimentally!

Work presented here

- Investigates the relationship between language redundancy and prosodic boundary strength
- through the effect of:
 - syntactic frequency
 - word frequency
 - word bigram frequency
- $\rightarrow\,$ on the placement of intonational phrase boundaries
- $\rightarrow\,$ on durational measurements of boundary strength

Challenge:

Need to vary language redundancy, while using controlled material

- with similar syntactic phrasing
- with similar segments across boundaries (effects might be subtle)

Experimental design: syntactic ambiguities

When the cake was dropped flat plants stuck to its underside

- Syntax A: the cake was dropped flat plants stuck to its underside (= modifying construction, [V [A N]])
- Syntax B: the cake was dropped flat plants stuck to its underside (= resultative construction, [[V A] N])

Estimation of syntactic frequency

• The following corpora were used to estimate syntactic frequencies

	Brown corpus	ICE-GB
Released	1964	1998
Tagging	Part of Speech (POS)	Syntactic (Treebank)
Tokens	~ 1 Million	~ 1 Million
English	BE	AE
Texts	Across all genres	Edited English prose
Citation	(Francis and Kučera 1964)	(ICE-GB corpus 1998)

Table: Information on the ICE-GB and the Brown corpus

Experimental design: syntactic ambiguities II

Frequency	determination:
-----------	----------------

	Verb-Adj		Adj-Noun
	main	copula	
ICE-GB corpus	1771	8781	21183
		552	
In %	~ 5% ~ 28%		~ 67%
	~ `	33%	
Brown corpus	1657 4562		47830
	-	552	
In %	~ 3%	~ 8,5%	~ 88,5%
	~ 1	1,5%	

Table: Frequency of syntactic combinations in the ICE-GB and the Brown corpus

Conclusion:

Syntax A (=modifying) is far more likely than Syntax B (=resultative)

Experimental design: placement of phrase boundaries

• Difference in syntax comes with difference in the placement of an intonational phrase boundary

V % A N or V A % N

- Expect V%AN to occur more often (if speakers are given a choice)
- $\rightarrow\,$ corresponding syntactic structure is more frequent

Experimental design: lexical frequencies I

In order to determine:

• effects of frequency **on syntactic choice**, the relevant syntactic sequence had to have four combinations:

Verb	Adj.	Noun	Shortcut
V _{frequent}	Adj.	N _{frequent}	ff
V _{frequent}	Adj.	N _{infrequent}	fi
V _{infrequent}	Adj.	N _{frequent}	if
Vinfrequent	Adj.	Ninfrequent	ii

- effects of frequency on boundary strength, the four combinations above had to be comparable:
 - in the rhyme/coda of the verb
 - in the onset of the noun
 - in the onset and the rhyme/coda of the adjective
 - ightarrow known to show the largest durational effects of boundary strength
 - But: had to allow for reliable measurements at the same time

Experimental design: lexical frequencies II

Estimation of lexical frequencies via WebCelex:

	Verbs	Nouns
frequent	> 2000	> 3000
infrequent	< 200	< 100

Table: Raw number thresholds for lexical (in)frequencies

- $\rightarrow\,$ Matching of verbs/nouns with respect to the form
- ff: When the cake was dropped flat plants stuck to its underside
- fi: When the cake was dropped flat planks stuck to its underside
- if: When the grass was cropped flat plants were able to grow again
- ii: When the grass was cropped flat planks were laid across the lawn

Experimental design: lexical frequencies III

Examples with four combinations:

freq Verb	infreq Verb	freq Nouns	infreq Nouns
dropped	cropped	cropped plank	
buy	dye	paper	paisley
call	wall	door	dorm
made	shade	picture	pitcher
make	rake	field	fief
stayed	bayed	sister	sissy
play	slay	fish	fiend
shake	snake	boxes	bobbers
turned	churned	balls	baulks
wear	pare	farmers	farthings
works	lurks	markets	marshals
walk	stalk	people	peafowls

Bigram frequencies

Determined **bigram frequencies** of Verb-Adj (V-A) and Adj-Noun (A-N) combination and their ratio: V-A/A-N

Problem: No corpus large enough to determine frequencies of infrequent combinations.

- ightarrow Google
- $\rightarrow\,$ 'Noisy', therefore just approximations
- \rightarrow Great variance
- \Rightarrow Divided data into abstract categories:

	low	med (buffer)	high
	< 40%	40% - < 60%	>= 60%
V_A	< 13900	< 314000	>= 314000
A_N	< 3180	< 108000	>=108000

Table: Abstract representation of raw bigram frequencies

Data gathering

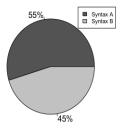
Data presentation:

Num	Block
1.	without comma, repetition 1 (58)
2.	with comma (112)
3.	without comma, repetition 2 (58)

Table: Presentation of sentences: 228 in total

- \rightarrow without commas (syntactic boundary placed according to choice)
- \rightarrow several repetitions; only discuss first repetition here (58 sentences/speaker)
 - <u>Subjects</u>: 23 participants (students at the University of Edinburgh, Ø=23,4 years, 14 females)
 - <u>Recordings</u>: sound-treated studio at the University of Edinburgh with a high quality microphone

Frequency and syntactic choice: results I


Annotation of syntactic choice:

1 annotator (100%), 1 annotator (40%) – 100% agreement

Here: 23 speakers, repetition $1 \rightarrow$ total of 1314 instances

Syntax	А	\rightarrow	V%AN
Syntax	В	\rightarrow	VA%N

Distribution of Syntax A and B

ightarrow almost equally distributed – surprising given the results from the corpora

Frequency and syntactic choice: results II

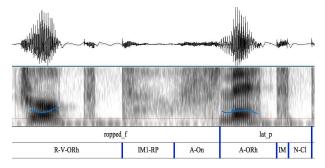
For the choice of syntax, the following factors were relevant:

- Syntax A (frequent syntax, V%AN) more likely with
 - highly frequent nouns (p < 0.05)
 - high A-N bigram frequency (p < 0.001)
- Syntax B (infrequent syntax, VA%N) more likely with
 - highly frequent verbs (p < 0.001)
 - high V-A bigram frequency (p < 0.001)
 - higher V-A in comparison to A-N bigram frequency (p < 0.001)

Durational measurements: preparation

Strict selection:

- Only speakers that generally had a high consistency across repetitions (1 sentence 1 choice in both repetitions)
- ightarrow 10 speakers
 - Only quadruplets that had the same syntactic choice across both repetitions
- $\rightarrow\,$ can measure frequency impact on duration and later compare it to repetition 2
 - Today: Discuss only repetition 1


Annotated sentences					
Syntax A Syntax B					
124	54				

Durational measurements: annotation

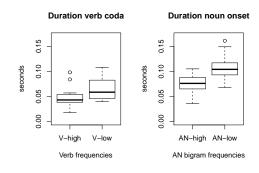
• Raw material, e.g.

V-A	A-N	example
ropped_f	lat_t	dropped flat plants
k_f	ree_p	walk free people

- $\rightarrow\,$ Problematic, a lot of segmental variation
 - Abstract annotation scheme, three intervals per sequence (six in total)

Durational measurements: annotation

Verb end		Adjecti	ve start	Adjective end		Noun s	Noun start	
V-Rh	rhyme	A-On	onset	A-Rh	rhyme	N-On	onset	
V-Co	coda	A-C1	closure	A-Co/Co1/Co2	coda/coda part 1/2	N-C1	closure	
V-ORh	with part of onset			A-ORh	with part of onset			
R-V	with onset release			A-Nu	nucleus, not coda			
				R-A	with onset release			
Intermedia	te (IM1 and IM2)	Comme	ent:					
R	release	Might i	include aspira	ation!				
P	pause	Missing	Missing pause (P) is only indicated if syntax requires it					
RP	release and pause	Both -I	Both -P/-RP are only indicated if there is no closure following					
		If no R	If no R/P is present and not expected, then leave out IM. Else use brackets ()					
Supra-mar	kers	Comme	ent:					
?	insecurity	Insecur	ity in annota	tion, mostly at prece	eding or following border			
x_x	connection	Connec	tion across v	vord boundaries - e.g	g., V-Rh_IM1_A-On			
()	missing element	For elei	For elements that should be there, but are not (mostly R and P)					
NA		If a sep	If a separation at word boundary in DurationSep (only!) is not possible					
rel	release		Only on DurationSep level. Connected to other parts with +					
pause	pause	Same a	Same as release					
glot	glottalization	Same a	Same as release					
(breath)	non-expected release	Same as release						

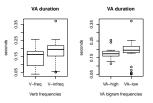

 \rightarrow Allows for grouping of similar patterns to get more reliable measurements! BUT: If there was no clear boundary, intervals were connected via an underscore (_)

 $\rightarrow\,$ particular item then not part of analysis - further reduction of data

Frequency and duration: some (significant) results I

Syntax A (frequent, V%AN):

- When lexical frequency V is low: increased verb coda interval duration ($\mathsf{p} < 0.05)$
- $\bullet\,$ When bigram frequency AN is low: increased noun onset interval duration (p<0.05)



Frequency and duration: some (significant) results II

Syntax B (infrequent, VA%N):

• When lexical frequency V is low or bigram frequency VA is low: increase overall VA duration

(p < 0.05 and p < 0.01)

- \rightarrow Same effect is found with the verb coda (but not with the adjective onset) (p < 0.05 and p < 0.01)
 - When VA bigram frequency higher than AN frequency:
 - decrease of verb coda interval duration
 - (p < 0.001)
 - increase of noun onset interval duration
 - (p < 0.01)

Conclusion (duration)

All of these results are consistent with the SSRH:

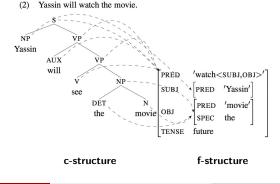
- inverse relationship between language redundancy (lexical frequencies, bigram frequencies, and their interaction) and durational measurements of the prosodic boundary-related intervals
- $\rightarrow\,$ frequency effects are found to influence all levels of language

Question:

How can we encode this in a formal implementation of grammar? ... also with respect to possible uses in, e.g., speech synthesis applications

'performance' knocking at the door of 'competence'

Prosodic structure and its interfaces


Two aspects to this question:

- 1. The likelihood of the syntactic structure
- $\rightarrow\,$ Formally, this can be achieved via so-called OT-preference-marks in the syntactic encoding
- $\rightarrow\,$ In the case of syntactically ambiguous structures, the syntactic choice can be signalled via prosodic boundary placement
- \Rightarrow The prosodic boundary either occurs before (V%AN) or after (VA%N) the adjective
- 2. Inverse relationship of language redundancy and duration
- ightarrow Low frequency correlates with longer duration and vice versa

We can formally analyze these processes in Lexical-Functional Grammar (LFG)

LFG - projection architecture

- LFG has a modular projection architecture.
- $\rightarrow\,$ The different levels of representation are related to each other via mathematically defined projections.
- \rightarrow E.g., each piece of the c(onstituent)-structure contributes information to the f(unctional)-structure.

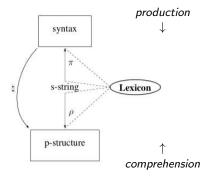
LFG's Projections

Over the years, more projections than the original core c-structure and f-structure have been argued for:

- s(emantic)-structure
- a(rgument)-structure: place for thematic roles and information about predicate composition (complex predicates)
- i(nformation)-structure: place for information structural components
- p(rosodic)-structure: information on intonation and on prosodic constituency

LFG's Projections

The architecture of LFG allows for complex interactions across projections.


- Initial LFG proposals for the p-structure were "syntactocentric"
- Newer proposals have moved to seeing prosody as a separate level of representation that interacts with morphosyntax, but is not completely derived from it
- The analysis presented here is based on the syntax-prosody interface for LFG developed in Bögel (2015).

The Prosody-Syntax interface (Bögel 2015)

Two perspectives:

(Roughly following models as proposed by, a.o., Levelt (1999) and Jackendoff (2002)

- *Production*: from meaning to form (syntax → prosody)
- Comprehension: from form to meaning (prosody \rightarrow syntax)

 \natural : The *Transfer of structure* \rightarrow Information on (larger) syntactic and prosodic phrasing, and on intonation is exchanged

 ρ : The Transfer of vocabulary \rightarrow Associates morphosyntactic and phonological information on lexical elements and projects them to their respective structures

P-structure – the p-diagram (during production!)

- Linear representation in the p-diagram
- \rightarrow structured syllablewise
- \Rightarrow Each syllable is part of a vector associating the syllable with relevant values: \rightarrow *lexical stress, segments, prosodic phrasing, ...*
 - Includes language-specific phonological processes (postlexical phonology, prosodic restructuring)

↑ ↑				Ť
PHRASING	$(\sigma)_{\omega})_{\iota}$	$(\iota(\sigma)_{\omega})$	$(\sigma)_{\omega}$	
LEX_STRESS	prim	prim	prim	
SEGMENTS	/dropt/	/flæt/	/plaŋks/	
V. INDEX	S_1	S_2	S ₃	S ₄

• **Input** to the p-diagram comes from syntax/c-structure (*Transfer of structure*) and the lexicon (*Transfer of vocabulary*)

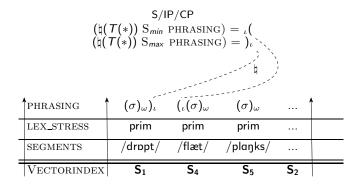
The Transfer of Vocabulary

- Associates morphosyntactic and phonological information on lexical elements
- \rightarrow Via the multidimensional lexicon, which projects them to their respective structures

s(yntactic)-form				p(honological)-form		
dropped	V	$(\uparrow \text{PRED})$	= 'drop $\langle SUBJ \rangle$ '	P-FORM	[drɒpt]	
		(\uparrow TENSE)	= past	SEGMENTS	/drɒpt/	
				METR. FRAME	$(\sigma)_{\omega}$	
planks	Ν	(\uparrow PRED)	= 'plank'	P-FORM	[plaŋks]	
		$(\uparrow \text{ pers})$	= 3	SEGMENTS	/plaŋks/	
		(† NUM)	= PI	METR. FRAME	$(\sigma)_{\omega}$	

- Each lexical dimension can only be accessed by the related module
- $\rightarrow\,$ Modular: strict separation of module-related information
- $\rightarrow\,$ Translation function: Once a dimension is triggered, the related dimensions can be accessed as well.
- ⇒ Associated p-form is selected and made available to p-structure.

The Transfer of Vocabulary II


p(honological)-form				
P-FORM	[drɒpt]			
SEGMENTS	/drɒpt/			
METR. FRAME	$(\sigma)_{\omega}$			
P-FORM	[plaŋks]			
SEGMENTS	/plaŋks/			
METR. FRAME	$(\sigma)_{\omega}$			

↑ ↑		\downarrow		↑
PHRASING	$(\sigma)_{\omega}$	$(\sigma)_{\omega}$	$(\sigma)_{\omega}$	
LEX_STRESS	prim	prim	prim	
SEGMENTS	/dropt/	/flæt/	/plaŋks/	
V. INDEX	S ₁	S ₂	S ₃	S ₄

• Also needed: Information on larger prosodic constituents

 $\rightarrow\,$ Via the transfer of structure

The Transfer of Structure ... from syntax to prosody

- where S_{min} refers to the *first* syllable within the scope of a node
- where S_{max} refers to the *last* syllable within the scope of a node
- → Roughly following Selkirk (2011)'s *Match theory*
- But problem still unresolved: Where should frequency effects be encoded?

Frequency effects as part of the lexical entry

- Further dimension: meta information
- $\rightarrow\,$ Encodes the individual lexical frequency
- $\rightarrow\,$ Encodes bigram frequencies

s-form	p-form		meta	
dropped V	P-FORM SEGMENTS	[drɒpt] /drɒpt/	LEX_FREQ BI_FREQ	high
	METR. FRAME	$(\sigma)_{\omega}$	drop=flat	high
				•••
planks N	P-FORM SEGMENTS	[plaŋks] /plaŋks/	LEX_FREQ BI_FREQ	low
	METR. FRAME	$(\sigma)_{\omega}$	flat=planks	low

Frequency effects in the p-diagram

• Frequency information becomes part of the underlying representation, e.g. as LANGUAGE REDUNDANCY:

PHRASING	$(\sigma)_{\omega})_{\iota}$	$(\iota(\sigma)_\omega$	$(\sigma)_{\omega}$	1
SEGMENTS	/drɒpt/	/flæt/	/plaŋks/	
LANG_RED	(high	[high) _{high}	low] _{low}	
Vectorindex	S ₃	S ₄	S_5	

- ... passed on to the phonology-phonetics interface ...
- where this information can be transformed into the associated acoustic cues
 - \rightarrow For syntax A:
 - When lexical frequency V is low: increased verb coda interval duration
 - When bigram frequency AN is low: increased noun onset interval duration

Overall framework

	S/IP/CP							
	$T(*)) \mathbf{S}_{min} \mathbf{S}_{max}$							
(· · · · · · · · · · · · · · · · · · ·	s-form	n	p-form		meta	
Ϋ́,		and a start of the	drop	V	P-FORM	[dropt]	LEX_FREQ	high
ì, E	1	and the second			SEGMENTS	/dropt/	BI_FREQ	
1	1	0	\geq		METR. FRAME	$(\sigma)_{\omega}$	drop=flat	high
Ì.		and a second	plank	N	P-FORM	[plaŋks]	LEX_FREQ	low
	λ				SEGMENTS	/plaŋks/	BI_FREQ	
	λ	and the second se			METR. FRAME	$(\sigma)_{\omega}$	flat=planks	low
ب		erer a			t			
PHRASING	$(\sigma)_{\omega})_{\iota}$	$(\iota(\sigma)_{\omega})$	$(\sigma)_{\omega}$					
SEGMENTS	/dropt/	/flæt/	/plaŋks/					
LANG_RED	high	[high	$low]_{low}$					
V. INDEX	$\mathbf{S_1}$	S_2	\mathbf{S}_{3}	\mathbf{S}_4				
		\downarrow						
	phonetics							
(acco	ording to in	dividual l	anguage c	onstra	aints)			

Conclusion

- Language redundancy affects the strength of prosodic boundaries
- ightarrow Allows for a smooth signal: recognition of each element is equally likely
 - Word and bigram frequencies are part of the lexical entry
- $\rightarrow\,$ This information can be encoded as part of the underlying p-structure
 - Transformation into concrete acoustic cues at the interface between phonology and phonetics

Outlook:

- ...

- Compare repetitions
- Investigate F0
- Zoom in on bigram frequencies across boundaries

Thank you!

... questions, comments...?

References I

- Aylett, Matthew. 2000. Stochastic suprasegmentals: Relationships between redundancy, prosodic structure and care of articulation in spontaneous speech. Ph. D.thesis, University of Edinburgh.
- Aylett, Matthew and Turk, Alice. 2004. The Smooth Signal Redundancy Hypothesis: A Functional Explanation for Relationships between Redundancy, Prosodic Prominence, and Duration in Spontaneous Speech. Language and Speech 47(1), 31–56.
- Aylett, Matthew and Turk, Alice. 2006. Language redundancy predicts syllabic duration and the spectral characteristics of vocalic syllable nuclei. Journal of the Acoustical Society of America 119(5), 3048–3058.
- Bell, Alan, Brenier, Jason M., Gregory, Michelle, Girand, Cynthia and Jurafsky, Dan. 2009. Predictability effects on durations of content and function words in conversational English. Journal of Memory and Language 60(1), 92–111.
- Bögel, Tina. 2015. The Syntax-Prosody Interface in Lexical Functional Grammar. Ph. D.thesis, University of Konstanz.
- Francis, W. Nelson and Kučera, Henry. 1964. A Standard Corpus of Present-Day Edited American English, for use with Digital Computers. Technical Report, Department of Linguistics, Brown University, Providence, Rhode Island, US.
- Gahl, Susanne and Garnsey, Susan. 2004. Knowledgef of grammar, knowledge of usage. Syntactic probabilities affect pronunciation variation. Language 80, 748–775.
- ICE-GB corpus. 1998. 'Online resource: http://ice-corpora.net/ice/icegb.htm .
- Jurafsky, Dan, Bell, Alan, Gregory, Michelle and Raymond, William. 2001. Probabilistic relations between words: Evidence from reduction in lexical production. In J. Bybee and P. Hopper (eds.), Frequency and the Emergence of Linguistic Structure, pages 229–254, Amsterdam: John Benjamins.
- Pluymaekers, Mark, Ernestus, Mirjam and Baayen, R. Harald. 2005. Lexical frequency and acoustic reduction in spoken Dutch. Journal of the Acoustical Society of America 118, 2561–2569.
- Turk, Alice. 2010. Does prosodic constituency signal relative predictability? A Smooth Signal Redundancy hypothesis. Laboratory Phonology pages 227–262.
- Watson, Duane G., Breen, Mara and Gibson, Edward. 2006. The role of syntactic obligatoriness in the production of intonational boundaries. Journal of Experimental Psychology: Learning, Memory and Cognition 32, 1045–1056.