Practical Application of Finite State Morphology

% gn Exercise with the German Plural *

1 Preparation

Your task during this practical part of the tutorial will be to create a finite state
morphology for the German Plural (not a simple problem).

On your Desktop you will find a direction called FSM_clt. Open it and you will
find some files and software. We have prepared three empty files for you which
you should use during the exercise:

e In lex.txt you should work on a lexicon for the German plural forms

e In order to deal with the stem alternations by the means of regular expres-
sions, use rules.txt

e script.txt is where all your stack commands should go.

e Apart from these files, please open the xfst — this is your interface that
compiles and manipulates your files.

help: If you need any help, there is an example lexicon, a table with regular ex-
pressions and list of useful commands at the end of this file.

Within your directory you can also find the slides that we have just presented.
Furthermore: feel free to ask anyone of us!!

2 The Data

This section introduces the data that you should now turn into a finite state mor-
phology.

The German Plural includes a lot of different suffixes added to the stem. Three of
them are -¢, -n and -er.

Furthermore, the appearance of these suffixes can cause a vowel alternation within
the stem, which is called Umlaut. This alternation causes the vowel to become a
little bit higher:

e a — i (or ae as we will spell it in the exercise)
e 0—0/o0e
e u—ii/ue

e and i do not form an Umlaut

See the following table for some data, which you should work on.

The German Plural is mostly regular, but the Umlaut will not always be there.

| word || -er -n -e | Translation
Maus Maeuse || mouse
Zug Zuege train
Hund Hunde || dog
Hand Haende || hand
Ratte Ratten rat
Raute Rauten hash symbol
Natter Nattern (kind of) snake
Haus Haeuser house
Mann || Maenner man
Land | Laender country
Huhn || Huehner chicken

some brief advice:
1. First, write a Lexicon that covers the stems and the basic suffixes in lex.txt.

2. To change the stem vowel, you will have to write rules with the help of
regular expressions in rules.txt.

3. Type all the stack commands into your script (script.txt): this saves you a
lot of time.

.... but let’s start step by step:

3 The Plural -e

Let’s start with the plural -e — this way you only have to deal with four stems and
can concentrate on the problems coming along with them.
3.1 The Plural -e — starting with the lexicon

First, let us start with a lexicon describing the German plural suffix -e:

e Open up the lex.txt, create a “LEXICON Root” and include the four singular
forms that have -e as their Plural.

e Second, you will have to have one continuing lexicon for singular and plural
(+Sg and +P1).

e Do not forget to create a Multichar_Symbols section at the top where you
declare the Plural and Singular tags.

Let’s see how you did: open the xfst-interface and type

read lexc < lex.txt and then

print lower-words

you have accomplished your task when you have a singular and a plural-form
(which has an -e attached to it) for all of your words.

3.2 Starting the script

Open up your script.txt and type

clear in the first line and

read lexc < lex.txt in the second line.

Everytime you want to reload your lexicon (or any other files) simply type
source script.txt into the xfst-interface.

3.3 Working on the rules for the plural -e

Now we begin to work on the Umlaut. Open up rules.txt:

e Our first rule should change a, o, u into ae, oe, ue. We can accomplish this
by writing a rule like the following: a — > ae.
Note: parallel rules like the change of the letters above can be done by in-
serting a comma in between them: a — >ae,0o— >oe...

e Next, we need a condition for this vowel alternations to take place, since we
only want them to appear with the plural forms. The best condition would
be the plural tag itself. However, in our current lexicon, the +P1 only appears
on the upper side of the lexicon — in order to be able to use it within the
condition sector, we also need it to appear on the lower side.

We accomplish this by returning to our lexicon and add the +PI on the
lower side:

+Pl:e+Pl #;

Now we can use it as a condition...

e Our condition should be something like:
“a becomes ae iff +P1 follows somewhere”.
Note that there will be other letters between the vowel and the +Pl. You
should therefore add the ?* (0 to infinite number of elements) between the
place-holder _ and your condition “+PI” (which should be in quote marks
since we are in the regular expression modus). Do not forget the semicolon
and the newline at the end o your rule.

Now let us see how you are doing so far:

3.4 composing the network

Go back to the script and add
read regex < rules.txt tothe already existing commands.

In order to compose in the right order, we need to
turn stack and then
compose net

Return to the interface and type in source script.xfst and print lower-words:
If your output has the vowel alternations in it — well done, go on! If not, then try
to rewrite your rule.

Even you have accomplished the Umlaut, there are several problems left:
1. Maeuese is wrong — the u should not form an Umlaut
2. Huende is not the correct form — it should be Hunde
3. +Pl should not be in our output

Let us deal with these problems one by one:

3.4.1 *Maeuese

When we look at the data, the vowel that changes is always on second position.
We therefore should extend our rule. If we describe the environment before our
place holder _ closely, we can avoid the u in Maeuse changing. We therefore need
to define the word boundary (represented by .#.) and allow only one letter between
the boundary and the place holder: ? (without a star the question mark represents
exactly one letter).

Extend your rule, save the file again and rerun your script. Check the output: if
you have Maeuse then go on to the next problem, if not, then rewrite your rule.

3.4.2 *Huende

This problem is a little bit more complicated. How can we avoid the vowel within
Hunde alternating? We need a special indicator on this word so that we can use it
within the conditions. Another tag however will be very confusing ... you therefore
should mark this word with a flag.

Return to your Lexicon, invent/name a flag of your choice @P.?.7@ and attach this
flag directly to the stem form in your LEXICON Root. Don’t forget to declare it
within the Multichar_Symbols section.

Return to your rules. The easiest way is to write a new rule which is composed
with the rule we have already written. It should translate into

“u e becomes u iff there is following “@P.7.7@” somewhere”.

Write your rule after your first rule — this way, u e will already exist.

compose the two rules after the following scheme:

[Regular Expression/Rule 1]
.0.

[Regular Expression/Rule 27;

Save your files and rerun your script. If the output of the plural form of Hund is
Hunde you accomplished your task and can go on.
343 +P1

As a last step we want to get rid of the plural tag on the lower side. Therefore we
need to compose our two rules with one more: “+PI becomes zero”.
Rerun your script and check your output closely.... if all the plural forms are right:

Congratulations!!

4 Advanced task

If you would like to do more, continue by working on the other German plural
forms.

S Some help

Below is our testlexicon, which we used beforehand for the English data. Perhaps
this will help you to write the lexicon for the German Plural:

Multichar Symbols

+5g +PL +N +A

BF. LIOQUIN. yes@ @D LIQUIDR
BF. COUNT. yves@ @R, COUNT. yesid

LEETICON Root

milkEP. LINUID. yesi Noun;
carf@P. COUNT. yesid Mo ;
pity Nonan
LEEICON Houn

+H:0 SgPl;
aD. LIQUIDE &dj;

LEXICON SgPl

< "+P1":s "BR.COUNT. yes@" #;
+5g:0 #;

LEXTCON &Adj
+h: less #;

useful commands:

e read lexc < lex.txt —To load the lexicon onto the stack

print lower-words — If you would like to print the output

clear stack — To empty the stack

eliminate flag NAME — Do not forget to eliminate the flags!

read regex < rules.txt — will load the rules on the stack

source script.txt — will load the script onto the stack and with it all the com-
mands you wrote into it.

Perhaps, the following list of regular expressions will help you:

0 = EPSILON

?7 = ANY SYMBOL

#. = BOUNDARY SYMBOL

() = OPTIONALITY

+ = CONCATENATION WITH
ITSELF ONE OR MORE TIMES

* = CONCATENATION WITH
ITSELF ZERO OR MORE TIMES

~ = NEGATION _=PLACE HOLDER {} AND = CONCATENATION
[| = GROUPING — = BECOMES... || = IN THE CONTEXT OF...
| = UNION & = INTERSECTION .X. AND : = CROSSPRODUCT

.0. = COMPOSITION

Good Luck! :)

If you have any further questions, feel free to ask!

