
Grammar Development
with LFG and XLE

Miriam Butt
University of Konstanz

Last Time

• Motivation for Deep Grammar Development

• Application Demos

• Basic Information about XLE and ParGram

• Practical Work:

- Install XLE

- Experiment with INESS Web-XLE

1. LFG/XLE Basics

• Context Free Phrase Structure Rules

• Grammatical Relations (Grammatical Functions)

• Lexical Entries

• Functional Annotations:

- Unification (Consistency)

- Completeness and Coherence

• Templates

2. Practical Work: The XLE Walkthrough

This Time: Lesson 2

Basic LFG
! Constituent-Structure (c-str): tree
! Functional-Structure (f-str): Attribute Value Matrix
! Information projected from c-str to f-str via

Functional Annotations

NP

PRON
 they

S

VP

 V
appear

PRED 'pro'

PERS 3

NUM pl

SUBJ

TENSE pres

PRED 'appear<SUBJ>'

Grammar Components
An LFG Grammar typically contains:

! Annotated phrase structure rules (S --> NP
VP)

! Lexicon (verb stems and functional elements)
! Templates
! Finite-State Morphological Analyzer
! A version of Optimality Theory (OT):

– used as a filter to restrict ambiguities
– and/or parametrize the grammar
– debugging

! Also possible:
– disambiguation feature file based on statistical

Grammar sections

! Configuration section
! Rules, templates, lexicons
! Each has:

– version ID
– component ID
– XLE version number (1.0)
– terminated by four dashes ----

! Example:
STANDARD ENGLISH RULES (1.0)

Basic configuration section
TOY ENGLISH CONFIG (1.0)
ROOTCAT S.
FILES .
LEXENTRIES (TOY ENGLISH).
RULES (TOY ENGLISH).
TEMPLATES (TOY ENGLISH).
GOVERNABLERELATIONS SUBJ OBJ OBJ2 OBL COMP

XCOMP.
SEMANTICFUNCTIONS ADJUNCT TOPIC.
NONDISTRIBUTIVES NUM PERS.
EPSILON e.
OPTIMALITYORDER
 NOGOOD.

Syntactic rules

! Annotated phrase structure rules

 Category --> Cat1: Schemata1;
 Cat2: Schemata2;
 Cat3: Schemata3.

! Example
 S --> NP: (^ SUBJ)=!
 (! CASE)=NOM;
 VP: ^=!.

XLE vs. LFG Notation
! XLE uses a notation that is slightly different

from standard LFG.
! The reason is that XLE is more “ASCII”

conscious.
! Also see the file basic-notation.pdf

 Meaning LFG XLE

Functional annotation pointing
to mother node

↑ ^

Functional annotation pointing
to current node

↓ !

Element of a set ∊ $

Another sample rule

 "indicate comments"
VP --> V: ^=!; "head"
 (NP: (^ OBJ)=! "() = optionality"
 (! CASE)=ACC)
 PP*: ! $ (^ ADJUNCT). "$ = set, * = Kleene star”

VP consists of:
 a head verb
 an optional object
 zero or more PP adjuncts

Annotations and Projection

S

VP: ^=!

V: ^=!

PRED 'pro'

PERS 3

NUM pl

SUBJ

TENSE pres

PRED 'appear<SUBJ>'

NP: (^ SUBJ) = !

PRON: ^=!

appear
(^ PRED) = ‘appear<(^SUBJ)>
(^ TENSE) = pres

 they
(^ PRED) = ‘pro’
(^ PERS) = 3
(^ NUM) = pl

Lexicon
! Basic form for lexical entries:

word Category1 Morphcode1 Schemata1;
 Category2 Morphcode2 Schemata2.

! Examples

walk V * (^ PRED)='walk<(^ SUBJ)>';
 N * (^ PRED) = 'walk' .

girl N * (^ PRED) = 'girl'.

kick V * { (^ PRED)='kick<(^ SUBJ)(^ OBJ)>'
 |(^ PRED)='kick<(^ SUBJ)>'}.

the D * (^ DEF)=+.

Grammatical Relations in LFG
! Grammatical Relations are a central

component of any LFG analysis.
! They are generally referred to as Grammatical

Functions (GF) in LFG.
! Predicates are taken to have

subcategorization frames, e.g.
 (^ PRED)='kick<(^ SUBJ)(^ OBJ)>'

! Deciding on which GFs are subcategorized
for by a given predicate is a matter of
linguistic analysis.

Grammatical Relations in LFG
! The set of GFs in LFG is:

– SUBJ (subject)
– OBJ (object)
– OBJ2 or OBJ-TH (or OBJθ, secondary objects)
– OBL (tends to be subcategorized for PPs in English)
– XCOMP (non-finite complement clause)
– COMP (finite complement clause)

! See Dalrymple (2001, Ch. 2) for background,
discussion and possible tests to determine GFs
across languages.

Surface (c-str) vs. Deep Structure (f-str)
! Languages vary substantially in terms of word

order and constituency requirements.
! C-structure representations for languages will

therefore vary substantially.
! However, all standardly transitive clauses should

contain a SUBJ and an OBJ at f-structure.
! Example: Warlpiri vs. English

! The Australian language Warlpiri allows for
very free word order.

! The auxiliary/finite element just needs to be in
2nd position.

 kurdu-jarra-rlu kapala maliki
 child-Dual-Erg Aux.Pres dog.Abs
 wajipili-nyi wita-jarra-rlu
 chase-NonPast small-Dual-Erg
 ‘The two small children are chasing the dog.’

! In contrast, English is
– restrictive about allowing NPs to be discontinuous
– restrictive about word order possibilities

Surface (c-str) vs. Deep Structure (f-str)

! However, the f-structure representation for
both languages is quite similar.

Surface (c-str) vs. Deep Structure (f-str)

PRED 'child'

PERS 3

NUM pl

SUBJ

TENSE pres

PRED 'chase<SUBJ,OBJ>'

PRED 'dog'

PERS 3

NUM sg

OBJ

Basic LFG – Wellformedness
LFG operates with three basic wellformedness
principles:

! Consistency
Every attribute can only have one value.

! Completeness
All grammatical functions listed in a subcategorization
frame must be present and they must have a PRED
(themselves be predicational). Exception: Non-
Thematic Arguments (“It is raining.”)

! Coherence
All grammatical functions in an f-structure must be
licensed by a subcategorization frame.

Demo – Parsing Sentences

! The following demo shows how to load a
grammar into XLE and to work with it.

! You can download the grammar file and
work along with the examples – it is called
grammar1.lfg.

! The basic LFG principles of Consistency,
Coherence and Completeness are
demonstrated.

! Basic errors occurring with parsing are
also demonstrated, plus tips for debugging
the grammar.

Testsuites
! The demo also features the use of a testsuite.
! This is a file that contains the sentences that

your grammar can parse
! (and also ones that your grammar should not

be able to parse).
! You should start working with a testsuite right

away.
– It saves typing.
– It keeps a record of what your grammar could

and could not do.

Testsuites
! When you make changes to your grammar,

you should always check to make sure that
the grammar can still parse all the
sentences you had implemented before.

! This is called regression testing.
! Regression testing is a very important part of

any software development, including grammar
development.

! The testsuite used for the demo is testsuite1.lfg.
! ALWAYS work with a testsuite.

Demo

grammar1.lfg
testsuite1.lfg

Templates

! grammar1.lfg contains
– a c-structure rules with annotations
– a lexicon

! It does not contain any templates.
! We introduce templates very early on

because they
– save time in grammar writing
– encode linguistic generalizations well
– assist in keeping your grammar clean and

organized (less debugging work likely)

Templates
! Abbreviatory device for f-annotations

! Have to be defined in a separate section of the
grammar, the TEMPLATES section.

! Example for a template:
PRES3SG = (^ TENSE) = pres
 (^ SUBJ PERS) = 3
 (^ SUBJ NUM) = sg

! Are invoked by means of the prefix @, e.g.
@PRES3SG

Templates
! Express generalizations

– in the lexicon
– in the grammar
– within the template space

No Template

girl N * (^ PRED)='girl'
 { (^ NUM)=SG
 (^ DEF)
 |(^ NUM)=PL}.

With Template

TEMPLATE: CN = { (^ NUM)=SG
 (^ DEF)
 |(^ NUM)=PL}.

girl N * (^ PRED)='girl' @CN.
boy N * (^ PRED)='boy' @CN.

“{ | } expresses a
disjunction”

Templates
! Parameterize template to pass in values

CN(P) = (^ PRED)='P'
 { (^ NUM)=SG
 (^ DEF)
 | (^ NUM)=PL}.

! A template can call other templates

INTRANS(P) = (^ PRED)='P<(^ SUBJ)>'.
TRANS(P) = (^ PRED)='P<(^ SUBJ)(^ OBJ)>'.
OPT-TRANS(P) = { @(INTRANS P) | @(TRANS P) }.

girl N * @(CN girl).
boy N * @(CN boy).

Templates
! Make it possible to create an “inheritance”

hierarchy of (f-annotations of) lexical entries.
! But nothing in LFG or XLE forces you to

organize (f-annotations of) lexical entries in an
inheritance hierarchy.

! This is fundamentally different between LFG/
XLE and HPSG and its implementations (LKB,
Trale, etc.)

! In practice we have found that template calls
have a maximum embedding of up to three
levels.

Practical Work

! This concludes Lesson 2.
! The practical work you should do now is to go

through the XLE Walkthrough.
! This is part of the XLE documentation.

! It is very informative and very thorough.
! Be prepared to spend some time on this

exercise.
! Details can be found in Exercise 2.

29

