
Grammar Development
with LFG and XLE

Miriam Butt
University of Konstanz

Last Time

• Integration of OT-Marks

- Parsing

- Generation

• Pronouns

1. Imperatives

• empty nodes (e)

• The LFG/XLE take on “Constructions”

2. Coordination

• Regular Expression Macros

• Metarulemacros

3. (Proper Names)

This Time: Lesson 6

Non-Overt Arguments
! Languages allow arguments to be non-overt.
! For example, in the imperative, the addressee

subject is usually omitted.
! But many languages also allow arguments to

be omitted in other situations.
! This phenomenon is known as pro-drop.
! Several of the ParGram grammars have

implemented pro-drop (Japanese, Urdu).
! Gives rise to massive ambiguities so non-

trivial, but possible.

Null Argument in Imperatives
! LFG does not posit empty categories.
! However, XLE allows for an empty node "e".
! This node is useful if you need a place to put

information in the c-structure but have no good
node to place it on.

! Example: the null argument in imperatives.
» Take the exam!

! General ParGram strategy:
– Introduce a separate category (construction): Simp
– Have this contain an empty category with the

relevant information.

Null Arguments
! Example for imperative:
	 Simp --> e: (^ SUBJ PRED) = 'pro'
	 (^ SUBJ PERS) = 2;
 VP
 EXCL.

! The EXCL stands for “exclamation mark” and
integrates this punctuation mark into the
grammar.

! The e denotes an empty node. This does not
show up in the c-structure.

ROOT vs. S
! So far we have had “S” be the top category in

the grammar.
! But languages tend to contain several different

types of sentences:
– declaratives
– imperatives
– questions
– ...

! Solution (ParGram): change the root category
from S to ROOT in the configuration section of
the grammar.

	

ROOT vs. S
! Let ROOT expand to different sentence types.

– S (normal declarative sentence)
– Simp (imperative)
– Sint (interrogative)

! In a sense, this approach implements the idea
of “Constructions” as propagated by
Construction Grammar (CG), for example.

! However, these constructions have no
theoretical status in LFG (unlike in CG).

! They are an engineering solution developed
within XLE.

	

Constructions at c-structure
! An alternative solution would be to have just a

single S (or CP or IP, depending on the
theoretical orientation).

! The different types of S would then be
encoded at the functional level (f-str).

! But in grammar writing one should always
keep the following in mind:

– c-structure is about context-free rules and hence
computationally “cheap”.

– f-structure is context sensitive. It involves
constraint checking and feature unification and
is computationally expensive.

	

Demo

grammar5.lfg
testsuite5.lfg

imperative (implement)
empty category e
ROOT category
(regeneration)

Coordination
! Recall: every attribute can only have one value.
! So what do we do with coordinated constituents?

Example: gorillas [climb trees] and [eat bananas]
VP --> { …
 | VP: ! $ ^
 CONJ
 VP: ! $ ^
 }.

! Answer: put them into a set (↓∈↑)

Coordination – Sets
! Advantage of sets:

– can have multiple instances
– no feature clash

! Disadvantage:
– Coordinated items are in an unstructured “bag”.
– Do not know which came first linearly unless one

looks back at the c-structure.
– This can become important for calculating scope

relations.
! Solution:

– register the linear order (scope) at f-str via <s

Coordination – Example

Coordination
Coordination can happen at any level of c-str.

Example: the gorillas [peel and eat] the bananas
V --> { …
 | V: ! $ ^
 CONJ
 V: ! $ ^
 }.

Coordination
! Basically every category can be

coordinated.
! Known as Same Category Coordination.

Example: the gorillas eat the bananas [in the 	
	 	 cage and in the garden]

PP --> { …
 | PP: ! $ ^
 CONJ
 PP: ! $ ^
 }.

Coordination
How can we capture these generalizations?

Via regular-expression macros!

SCCOORD(CAT) = CAT: ! $ ^;
 CONJ
 CAT: ! $ ^.
PP --> { ...
 | @(SCCOORD PP)
 }.

Nominal coordination
! NP, N, etc. coordination is special.
! The NUM attribute should typically have the

value pl.
! Even when the individual set members are

singular.

 Mary likes bananas.
 Mary and the gorilla like bananas.
 *Mary and the gorilla likes bananas.

 The boys and girls like bananas.

Nondistributives
! In the configuration section of the grammar

NONDISTRIBUTIVES are specified.
! Recall that the SUBJ was distributed over both

conjuncts in our example.
! In grammar5.lfg, NUM, PERS are specified as

being nondistributives.
! The values of these attributes are not

distributed across each conjunct – every
conjunct can have an individual value.

 Mary and I like bananas.

Nominal coordination
NPCOORD(CAT) = CAT: ! $ ^;
 CONJ: ^ = !
 (^ NUM) = pl;
 CAT: ! $ ^.
NP --> { ...
 | @(NPCOORD NP)
 }.
N --> { ...
 | @(NPCOORD N)
 }.

Nominal coordination
NP-CONJUNCT = "person resolution"

 { "if either conjunct is 1st person; the NP is"

 "EX: the boys and me}"

 (! PERS)=c 1

 (^ PERS)=1

 |"if a conjunct is 2nd person and the NP is not

 already 1st person, make it 2nd person"
 (! PERS)=c 2

 { (^ PERS)=c 1 "one conjunct was 1st person"

 "EX: you and I}"

 |(^ PERS)=2 } "else assign 2nd person"
 "EX: you and the boys}"

 |"else 3rd person, Ex: the boys and her}"
 (^ PERS)=3}.

METARULEMACRO
! Macros are a useful way of stating generalizations

across types of rules.
! But, it is tedious to amend almost all rules so that

either the SCCOORD or the NPCOORD macro
are invoked (e.g., PPs, NPs, VPs, Vs, ...).

! XLE therefore implemented a special macro
called the METARULEMACRO.

! Every rule goes through the METARULEMACRO
unless specified otherwise.

! It encodes a meta statement about the entire
grammar.

METARULEMACRO
! Takes three arguments: _CAT, _BASECAT, 	
	 	 	 	 and _RHS

! _CAT is the category on the left-hand side of
the rule

! _BASECAT is the same as _CAT unless you
are dealing with a complex-category rule

! _RHS is the right-hand side of the rule

METARULEMACRO
METARULEMACRO(_CAT _BASECAT _RHS)=

 { _RHS
 | e: _CAT $ { N NP };
 @(NPCOORD _CAT)
 | e: _CAT ~$ { N NP };
 @(SCCOORD _CAT)
 }.

Demo

grammar-coord.lfg
testsuite-coord.lfg

coordination

Practical Work

! This concludes Lesson 6.
! The practical work you should do now is

detailed in Exercise 6.
! You will practice with

– imperatives (empty categories)
– coordination (metarulemacro)
– proper nouns

More on NP-CONJUNCT

! The NP-CONJUNCT template reflects
crosslinguistic generalizations.

! However, not all languages are the same.
! The person resolution can generally be

determined via verb agreement.
! The next example is from Spanish – only first

person plural is acceptable.

José y yo hablamos/*habláis/$hablan.
Jose and I speak.1.Pl/2.Pl/3.Pl
‘Jose and I speak.’

