V1 in Icelandic: A Multifactorial Visualization of Historical Data

Miriam Butt, Tina Bögel, Kristina Kotcheva, Christin Schätzle, Christian Rohrdantz, Dominik Sacha, Nicole Dehé, Daniel A. Keim

University of Konstanz
78457 Konstanz, Germany
firstname.lastname@uni-konstanz.de

Abstract
We present an innovative visualization technique for the analysis of historical data. We illustrate our method with respect to a diachronic case study involving V1 word order in Icelandic. A number of interacting factors have been proposed by linguists as being determinative of matrix declarative V1. The significance of these factors in contributing to declarative V1 can be explored interactively via our multifactorial visualization within a given text, but also comparatively over time. We apply the visualization to a corpus study based on the IcePaHC historical corpus of Icelandic and show that new results emerge very clearly out of the visualization component and that the appearance of declarative V1 is not confined to the situations identified so far by linguists. We demonstrate that the multifactorial visualization opens up new avenues for the exploration of alternative explanations. The visualization can be applied to any linguistic problem studying an interaction between several factors across time.

Keywords: V1 declaratives, Icelandic, IcePaHC, language change, corpus, visualization

1. Introduction
We present an innovative method for the visualization of multifactorial linguistic data over time. We present our visualization with respect to a concrete corpus study of V1 matrix declaratives found in the recently released annotated Icelandic parsed historical corpus (IcePaHC) (Wallenberg et al., 2011; Rögnvaldsson et al., 2012). The visualization allows for an “at-a-glance” appraisal of the occurrence of V1 declaratives and we are able to adduce evidence that advances the existing linguistic understanding of V1 in Icelandic.

Each instance of a V1 declarative is coded as to what kind of subject it occurs with and what kind of verbal element is involved. We focus on these factors as they have been proposed by previous literature as being determinants for the occurrence of V1 in declaratives. Our multifactorial visualization also shows whether the occurrence of a given V1 with a certain type of subject and a certain type of verb is higher or lower than expected.

The visualization brings out several unexpected results. For one, contrary to what is suggested in the previous literature, V1 is not overly associated with subject-less sentences, nor does it occur primarily with certain kinds of lexical verbs. Furthermore, although V1 is generally thought to be relatively stable in the history of Icelandic, the visualization shows a marked decrease as of 1900 and an intermediary dip around 1550 CE. The latter can be attributed to genre, as V1 primarily occurs in narratives and the corpus around 1550 mainly comprises religious texts. The reasons for the former effect (decrease of V1 from about 1900) remains subject for further linguistic research.

In the discussion, we emphasize that the majority of our results could not have been obtained via “standard” corpus linguistic methods and that multifactorial visualizations such as the one presented here are poised to play a key role in furthering our understanding of diachronic data.

2. Theoretical Background
2.1. Word Order and Diachronic Change
Questions of word order change in languages have constituted a major point of inquiry within historical linguistics. For example, like most Indo-European languages, the Germanic languages are generally taken to have been SOV languages in their earlier manifestations (e.g., Eythórsson (1995); Fleischer and Schallert (2011); Fischer et al. (2000)). Today, English is an SVO language and German is what is known as a V2 language. The SOV, SVO or V2 word order generally refers to the word order in basic declarative matrix clauses. As is also well known, word order can vary within a language according to the type of clause expressed. For example, imperatives in German and English are V1 (verb initial), as are yes-no questions. However, German also contains instances of V1 in matrix declaratives (Axel, 2009; Hinterhölzl and Petrova, 2010). Some of the questions that arise with respect to historical change and word order are: 1) what determines changes in word order over time; 2) what determines differences in word order at a synchronic level? Many accounts to date invoke purely syntactic reasons for word order. One major factor that has been implicated in a change from SOV to SVO is the loss of case marking (e.g., see Kiparsky (1997); Kiparsky (2001) for a theory of diachronic change involving an interacting system of case, agreement and word order), factors such as finiteness are also known to play a role. More recently, a perspective that focuses more on the role of pragmatics and information-structure is being articulated in some detail (e.g., see Petrova (2011); Hinterhölzl and Petrova (2010); Hinterhölzl and Petrova (2011)).

In this paper, we look at data from Icelandic. Icelandic is a Germanic language that is rich in case marking and is a V2 language with fairly fixed word order. Moreover, V1 in matrix declaratives has existed throughout the recorded history of Icelandic and continues to exist today. In this paper, we examine data involving V1 matrix declaratives with the aim of identifying factors that facilitate V1 word
2.2. V1 in Icelandic

Previous studies on V1 in Icelandic (e.g., Sigurðsson (1990); Franco (2008)) have argued that declarative V1 is mainly confined to narrative inversion and is connected to the introduction of known referents. These studies present a syntactic account by which V1 in essence is actually a V2 (verb second) construction, just with a pro (empty) subject. Sigurðsson additionally presents a small corpus study comparing stages of Icelandic. He concludes that V1 is a fairly stable phenomenon in Icelandic, with only two changes, one being that Old Icelandic allowed for referential as well as non-referential pro while Modern Icelandic only allows non-referential pro. In addition, Modern Icelandic now allows for an expletive in initial position, thus rendering some of the old V1 structures effectively into V2 structures. He also notes that V1 is found mostly in narrative texts, a finding that is confirmed by our larger corpus study. However, we find that V1 is not primarily confined to narrative inversion. The purely syntactic account as promoted by Sigurðsson (1990) and Franco (2008) implies that only unaccusative verbs (including passives, etc.) are possible in V1 declaratives. However, our findings show that V1 is not restricted by lexical class. We also found only 448 instances of subjectless V1 sentences as opposed to 4893 sentences with overt subjects. This result casts serious doubt on the hypothesis that Old Icelandic allowed for referential as well as non-referential pro while Modern Icelandic only allows non-referential pro. Additional research is needed to fully understand the properties of V1 in Icelandic.

Some typical examples of declarative matrix V1 as identified by our corpus study are shown in (1)–(5).

(1) Vil ég heldur rita þeim hinum fám
will I rather write the.DAT those.DAT few.DAT
sinnum er þarf d og s
times.DAT REL required d and s
‘I shall rather write d and s on the few occasions where it [z] is needed.’
(1150, First Grammatical Treatise)

(2) gengur sðan á brøtt.
goed then to away
‘Then (he) goes away.’
(1350, Finnboga saga ramma)

(3) Verður Ketill forviðu fyrir atsókn þeirra
becomes Ketill.NOM astonished for attack their
‘Ketill becomes surprised by their attack.’
(1650, Illuga saga Tagldarbana)

(4) Gnæfði gaflinn hátt yfir fjóruna…
towered gable.the.NOM high over beach.the.ACC
‘The gable towered high over the beach.’
(1907, Jón Trausti Leysing)

(5) Sýndi drottinn mikla miskunn
showed Lord.NOM great.ACC mercy.ACC
vin sinum sankti Georgfum…
friend.DAT his_OWN.DAT saint.DAT George.DAT
‘The Lord showed his great mercy to his friend St. George…’
(1525, Georgíus Saga)

(1) shows an example with a modal verb in V1 position and a pronominal subject, (2) a V1 with an overt subject, (3) illustrates a ‘become’ verb, (4) a V1 with a definite NP subject. We could so far not identify any particular verb classes that V1 is confined to. We did find V1 with the verb types identified in previous literature, i.e., unaccusatives, verbs of motion, verbs dicendi, passives, existentials and inchoatives. Significantly, however, we also found agentive transitives as in (5), which are not predicted by the syntactic account.

A significant portion of the V1 structures involved modals or the verbs ‘do’, ‘have’, ‘be’ and ‘become’. Previous analyses (e.g., Franco (2008)) have suggested that modals are a fringe phenomena with respect to V1. This could not be confirmed via our corpus study. Furthermore, all types of verbs, auxiliaries and modals are used overwhelmingly with overt subjects. These overt subjects could be definites, indefinites or pronouns.

An alternative approach to V1 is the information structural view of declarative V1 put forward by Hinterhölzl and Petrova (2010), Hinterhölzl and Petrova (2011) and Petrova (2011) for German. Hinterhölzl & Petrova argue that V2 in German is derivative of an original V1 structure in Old High German. They develop a theory of information structure by which V1 occurs in particular contexts. For one, V1 is used systematically for presentational clauses and existential constructions. These clauses lack a topic-comment structure and the entire clause is in the scope of the assertion (focus). For another, V1 is used in declaratives with a range of verbs that includes motion verbs, verbs of saying and transformative/inchoative verbs. Hinterhölzl & Petrova argue that the basic function of V1 clauses is to introduce new referents to the discourse and that the various types of V1 clauses can be subsumed under the characteristics of lacking a topic-comment structure and the entire clause being in the scope of assertion, i.e. the entire clause is in focus.

Our data indicate that an information structural approach to V1 in Icelandic is more promising than a purely syntactic one, though the precise factors identified by Hinterhölzl & Petrova for German are not found in Icelandic. We conclude that more in-depth linguistic analysis is necessary and present the possibilities offered by our multifactorial visualization as a promising avenue for further research.

3. Initial Corpus Study

One of the properties of visual analytic techniques is the ability to present large amounts of data compactly while at the same time allowing for an interactive exploratory analysis of individual data items. The IcePaHC consists of 60 texts dating from the 12th to the 21st century. It comprises about 1 million words. The texts come from different genres and are not representative across the centuries. For example, in some centuries texts from narrative Sagas are more numerous than in others.

IcePaHC is annotated according to the syntactic annotation scheme of the Penn Treebank (Marcus et al., 1993). The annotation scheme is also compatible with the Penn historical corpora (Kroch and Taylor, 2000). The corpus is in principle ideal for an investigation of V1 matrix declaratives as differences between matrix embedded
We thus launched a more sophisticated query and identified
We conducted an initial query to the corpus via the Cor-
A disadvantage we discovered as part of launching the initial
A further very valuable feature of IcePaHC is that verbs
An advantage of the IcePaHC annotation is that yes-no ques-
(e.g., contra Franco (2008)).
The results of the corpus query show that declarative V1
In fact, it distinguishes between two different kinds of empty
overt presence or absence of the subject NP. For each verb
type, we therefore calculated the number of times it occurs
with the following: a pronominal subject, a definite NP, an
definite NP, a pro-dropped (overtly absent) subject and a
null expletive subject.
We then checked whether the observed correlation between
each verb type and each subject type was statistically signifi-
overall occurrence of type of subject with type of verb
and then checked whether the numbers found for just the V1
declaratives deviated from this expected pattern. We were
able to determine several highly significant correlations via
this test.
However, some of the highly significant results are based
on a very small data set. This is illustrated with respect
to the data for the time period from 1900 to the present,
shown in Table 2. Here, the patterns found with respect to
‘have’, ‘be’, ‘do’ and ‘become’ all come out as being highly
significant. However, a look at Table 1 shows that the data
being calculated with are very small: 10 instances for ‘have’,
2 for ‘do’, and 4 for ‘become’.
We did find interesting indications from the \(\chi^2 \)-test for some
other correlations. However, the overall picture is not clear
and the \(\chi^2 \)-test does not identify particular correlations be-
tween verb type and subject type — it only points to an
overall pattern that deviates from the overall pattern found
in the larger corpus. As a next step, we therefore turned to
the question of whether methods from visual analytics could
help with identifying determining factors for the appearance
of V1 throughout the history of Icelandic.

4. Visual Analytics

4.1. Motivation

Statistical analyses provide just a very rough picture of the
data and are suited to either confirm or reject previously ex-
pected or at least anticipated knowledge, i.e. they are limited
to the investigation of more or less evident hypotheses on
the data characteristics.
A visual analysis of a given data set on the other hand allows
one to push beyond what is possible with traditional corpus
analysis. Instead of merely (dis)confirming the expected, it
can lead to unexpected insights by granting an interactive
explorative access to the data. The structured statistical anal-
ysis process becomes open-ended, in that visualizations of
the data may enable researchers to spot unexpected patterns
or outliers that they had not been aware of before and that
might be of high relevance to them. In particular, visualiza-
tions may reveal feature patterns that disappear when using
conventional statistics, especially when the statistics require
parameters to be fixed, e.g., fixed time epochs that are the
basis for some calculations.
In order to support such a visual analytics process in a benefi-
cial manner, carefully designed visual mappings are required
(cf. Mayer et al. (2010), Rohrdantz et al. (2012)). Usu-
ally, the very first design idea will not be maintained, but

1http://corpussearch.sourceforge.net/CS.html
2The results also revealed some errors in the annotation in that
the corpus provides the infinitive (citation) form of verbs for each
finite verb encountered. However, some of these infinitive forms
were incorrect. We manually corrected these.
3In fact, it distinguishes between two different kinds of empty
subjects: expletives and pro-dropped subjects.
it enables insights that feed back into the design process. Our initial visualization showed each V1 sentence in the data individually, but then we decided to aggregate the sentence characteristics to the document level for visualization. Similarly, further details were changed iteratively during the design process. This included the integration of derivations of the original data: sometimes it is not the original numbers contained in the data that provide the best insights, but further calculations based on the initial raw numbers. We rejected the idea of visually representing the absolute number of appearances of certain phenomena in a text because the text lengths are quite heterogeneous and a proper comparison would have been difficult. Instead, the visual representation was designed to show whether such a number of appearances was higher or lower than expected.

4.2. Design and Development Process

Even though the visualization does not depend on previous assumptions, it requires some crucial initial design decisions which subsequently frame the kinds of insights that will be enabled. The challenge is to come up with solutions to plot the concrete data for generic explorations of historical data. Of course, the design can be improved iteratively, but it is quite helpful to reason first about which parts of the data might in principle be relevant and interesting to convey visually. Visualization designers and subject matter experts need to work tightly together and try to understand as much about the background and perspective of their counterparts as possible. In this project we pursued such a strategy. As a result of this, we suggest a novel visualization in order to provide both an overview on the described language corpus as well as insights at different levels of detail.

From an information visualization perspective the data consists of several texts, each of them including meta data and a set of sentences. Additional meta data about the texts, include, for example, genre, year and number of sentences. For each individual sentence, linguistic features can be derived as well. As a next step these features can be mapped to so called visual variables. We use a glyph for the visualization of a text within the corpus. Glyph representations of documents are known from the Information Retrieval field, e.g. the TileBars technique, which provides a compact and informative iconic representation of the documents’ contents with respect to certain query terms (Hearst, 1995).

Our glyph contains several visual variables, namely position, shape and color in order to encode sentence features aggregated on the document level. Each glyph holds some shapes that provide information about the occurrence of (V1-)sentence features for the corresponding text. We therefore transform all elements (texts/documents, sentences and related features) into our internal data model and offer aggregated features on different concept levels (e.g., sentence features are aggregated to text features based on the number of sentences). We chose the glyph representation because the number of features/dimensions are suitable for a glyph visualization and in addition we are able to integrate shapes into those glyphs. That is why we designed a novel glyph instead of using standard histograms, line/bar/pie-charts or glyphs (e.g., star glyphs). The glyphs are arranged in space for exploration. We encode the text age and the genre to x- and y-position as they are the most interesting variables. In general, our intent is to use redundant encodings for relevant features.

Our visualization offers several interaction techniques in order to drill down into the data if desired. First, we added zooming and panning interactions in order to navigate within the visualization’s viewport. Our visualization also enables analysts to get details on demand through tooltip operations.
Our system is built using the Java Piccolo 2D4 framework as it matches our requirements and has basic visualizations (e.g., basic shapes) and interactions built in. Language processing scripts that are the basis for feature extraction are integrated into the visualization system.

4.3. Our Multifactorial Visualization

Figures 3 and 4 show the overall visualization we arrived at. The texts contained in the IcePaHC are arranged from oldest to newest with the oldest represented at the very top, the newest at the very bottom. Each text is visualized as one composed glyph. A horizontal line extends from the middle of each glyph towards the right. This horizontal line is bisected by a vertical line. The horizontal line indicates the time span covered by the corpus. The vertical line shows where in the time span the text represented by the glyph is to be situated, see Figure 2 for an example.

Each glyph consists of three main parts. A horizontal bar on the top represents the length of the text in comparison to the longest text in the corpus. The bar of the longest text covers the whole width of the glyph. At the positions of the sentences containing V1, vertical light gray stripes are drawn in this horizontal bar. The user can thus determine the position of the V1 occurrence in the text and can determine where in the narrative flow of the text the V1 declarative is situated.

The main part of the glyph is a matrix containing colored items. The matrix represents the interaction of verb types with subject types. The columns encode verb types while the rows encode the subject types. The different verb and subject types can be identified by their position alone. However, for better visibility, verb types have redundantly been encoded by color and subject types have been encoded redundantly by shape. If a certain matrix cell is empty, the corresponding combination did not occur in the given text.

![Figure 2: Glyph representation for a text consisting of three main parts: (1) A horizontal bar representing the text length and V1-occurrences, (2) A matrix containing colored shapes that belong to the occurrence of a particular verb and (3) a timeline on the right.](image)

The visualization opens up new avenues of research for linguists. For one, it allows for a single, comprehensive view of the entire 60 texts of the corpus, as shown in Figures 3 and 4. Many details and possible influencing factors are displayed. For another, the visualization is interactive. After having identified potentially interesting patterns within the overall picture, the user can zoom into particular glyphs and examine the distribution of V1 declaratives within a particular text. The horizontal bar shows how long a text is and where in the text the particular V1 declarative is situated, allowing for an immediate assessment of the significance of the data. Furthermore, the visualization incorporates meta data on genre type. These can be accessed via mouse-over for each glyph. In Figures 3 and 4 all the Sagas have been arranged to appear on the very left of the visualization. The clump of texts in the middle (they appear around 1550) that are further to the right represent mainly religious texts (in the Figures, they appear at the bottom of Figure 3 and the top of Figure 4).

5. Insights and Discussion

The visualization shown in Figures 3 and 4 represents a powerful new tool for inquiries into diachronic change. Our findings to date show that proposals put forward to explain the occurrence of V1 declaratives in Icelandic so far do not match up with the actual patterns observed via the IcePaHC diachronic corpus, though we can confirm some of the findings of the previous literature.

Recall that Sigurðsson (1990) concluded that V1 is a relatively stable phenomenon in Icelandic, with the caveat that Modern Icelandic now allows for an expletive in initial position, thus rendering some of the old V1 structures effectively into V2 structures. Overall, this conclusion appears to be valid, as is his note that V1 is found mostly in narrative texts. As Figures 3 and 4 show, V1 is predominantly found in the Sagas (entirely narrative in nature). Our data also show that V1 shows a marked decrease as of 1900. This result is not entirely in keeping with Sigurðsson’s observation. The innovation of an overt expletive by itself should not make such a huge difference as expletives overall did not constitute a large part of the V1 declarative occurrences (total of 239 of 5341 instances; 10 expletive V1 instances were found in the modern Icelandic texts).

Overall we note that a syntactic account which seeks to

4http://www.piccolo2d.org/
understand declarative V1 primarily in terms of non-overt subjects (i.e., as underlying V2s) is not supported by our data. As shown in Figures 3 and 4, empty subjects (pro) and non-overt expletives are not generally found more frequently than expected. In absolute numbers, they make up a total of 448 of 5341 V1 declarative instances found in IcePaHC. Figures 3 and 4 also show very clearly that all verb types occurred with V1, especially modals and lexical (main) verbs. V1 does not seem to have been restricted to only a subclass of verbal types. In particular, our data show that modals are not fringe phenomena with respect to V1, as suggested by the existing literature, but constitute a central part of the phenomenon.

Finally, the visualization of genre type in Figures 3 and 4 makes a set of data stand out. Although Icelandic is generally held to be stable with respect to V1 declaratives up until modern times, the texts used to represent the Icelandic of around 1550 show a comparative absence of V1. Since the texts are all not Sagas, but tend to be drawn from religious literature, we suspect that IcePaHC is characterized by a genre effect that was not originally intended by the developers of IcePaHC. We would assume that the Icelandic of around 1550 as according to IcePaHC will exhibit differences to the other parts of the corpus in other areas as well — this is a factor that could seriously impede diachronic studies. However, it is also a factor that is brought to the forefront of one’s attention immediately by the visualization and can thus be factored into any analysis that is developed.

An issue that we have not addressed is whether the Icelandic data provide support for the alternative information structural approach to V1 articulated by Hinterhölzl & Petrova (2011). Rhetorical Relations and Verb Placement in Old High German. In Salience. Multidisciplinary perspectives on its function in discourse, pages 173–201. Berlin: de Gruyter.

6. Conclusion

We present a powerful new visualization tool for the study of diachronic change. We have developed this tool with respect to a case study of V1 declaratives in Icelandic; however, the tool should be applicable to any diachronic study that seeks to understand a multifactorial interaction of the type exemplified by Icelandic declarative V1.

7. Acknowledgements

This work was partially funded by the German Research Foundation (DFG) under grant BU 1806/7-1 “Visual Analysis of Language Change and Use Patterns” and the Research Initiative LingVisAnn at the University of Konstanz, Germany.

8. References

Figure 3: Top half of Visualization of V1 Occurrences in IcePaHC
Figure 4: Bottom half of Visualization of V1 Occurrences in IcePaHC