Motivation

- Visual analytics systems are increasingly used for the investigation of linguistic phenomena.
- Interpretability of results coming from machine learning algorithms is an issue in computational linguistics.
- Insights into cluster constituency and prototypical cluster members (centroids).

Aims

- Present a visual analytics system which facilitates "analytical reasoning by an interactive visual interface".
- Present strategies to deal with a large number of data points.
- Get an at-a-glance overview of the statistical exploration of a linguistically motivated phenomenon.

Case study

- Linguistic phenomenon: The varied behavior of nouns in Urdu N+v+complex predicates.
- Complex predicates in English: take a nap, get rid of...
- In Urdu: CPs as a preferred way of expressing events.
- Urdu nouns can take a range of light verbs that change the interpretation of the CP.

Visualization types

- Data objects are presented either as circles, normal glyphs or star glyphs.
- Circles: Every noun represented by a colored circle.
- Normal glyphs: Relative bigram frequencies mapped onto the length of arcs (ordered clock-wise around the center beginning in north position).
- Star glyphs: Extension of normal glyphs, ends of arcs are connected to form a "star".

The interactivity of the system

- Filtering:
 - Bigram frequency: E.g. only show nouns which occur with selected features (light verbs) exclusively.
 - Frequency above a certain threshold: E.g. show nouns which exceed a defined minimal frequency in the considered corpus.
 - Filter by cluster/class: show only a selected cluster/class.
 - A specific group of data points can be selected, inspected, extracted, re-clustered, re-visualized and stored using the visualization system.
 - The system allows to zoom in and out of the cluster visualization to find patterns based on different perspectives on the data.

Benefits of the visualization

- Facilitation of hypothesis-testing and -generation by representing data visually.
- Insights into the "black box" of clustering: constituency of the cluster, prototypical cluster members, distance of each data point to the centroid.
- System provides interpretable results which eases the communication between researchers of different fields.
- Built-in options and add-ons are designed for the type of work linguists are interested in: overview first, in-depth data inspection later.
- The interactivity allows for new interpretations of the data.

References

Acknowledgments

This work was partially funded by the German Research Foundation (DFG) under grant BU 1806/7-1 “Visual Analysis of Language Change and Use Patterns” and the German Federal Ministry of Education and Research (BMBF) under grant 01G1346 “VisArgue”.

The visual analytics system

- Input: bigram frequencies (absolute or relative) of noun + light verbs extracted from the Urdu BBC corpus.
- Initial clustering calculated in the high dimensional space using a k-Means algorithm.
- Projection onto the two-dimensional space using a Principal Component Analysis (PCA) algorithm.
- Each data point represents one noun and its light verb behavior.