
Transliterating Urdu for a Broad-Coverage Urdu/Hindi LFG G rammar

Muhammad Kamran Malik ‡, Tafseer Ahmed†, Sebastian Sulger†,
Tina Bögel†, Atif Gulzar ‡, Ghulam Raza†, Sarmad Hussain‡, Miriam Butt †

†Universität Konstanz,‡CRULP FAST NUCES
†Konstanz, Germany;‡Lahore, Pakistan

sebastian.sulger@uni-konstanz.de

Abstract
In this paper, we present a system for transliterating the Arabic-based script of Urdu to a Roman transliteration scheme. The system
is integrated into a larger system consisting of a morphology module, implemented via finite state technologies, and a computational
LFG grammar of Urdu that was developed with the grammar development platform XLE (Crouch et al. 2008). Our long-term goalis
to handle Hindi alongside Urdu; the two languages are very similar with respect to syntax and lexicon and hence, one grammar can be
used to cover both languages. However, they are not similar concerning the script – Hindi is written in Devanagari, whileUrdu uses an
Arabic-based script. By abstracting away to a common Roman transliteration scheme in the respective transliterators,our system can
be enabled to handle both languages in parallel. In this paper, we discuss the pipeline architecture of the Urdu-Roman transliterator,
mention several linguistic and orthographic issues and present the integration of the transliterator into the LFG parsing system.

1. Introduction

This paper introduces a Roman transliterator for the Urdu
Arabic-based script, which is used as part of a broad-
coverage grammar for the South Asian language Urdu
being developed within the ParGram (Parallel Grammar)
project (Butt et al., 1999; Butt et al., 2002). Very few
resources exist for Urdu and part of the project is to
build a broad-coverage finite-state morphological analyzer
for Urdu and to connect it up with the grammar via
the morphology-syntax interface, defined by Kaplan et al.
(2004) for Lexical-Functional Grammar (LFG) (Dalrym-
ple, 2001).
Hindi, although being very similar to Urdu, is written in
a different script: Devanagari. Since the goal of the Urdu
Grammar project is to eventually be able to process both
Urdu and Hindi text, our approach is to abstract away
from both of the scripts to a common Roman transliteration
scheme. This will allow us to use just one morphological
analyzer and one LFG grammar for both languages. As a
first step, we have developed a transliterator for Urdu via a
cascaded set of tools written in C++. This paper presents
the toolset as well as the integration of the transliterator
into the pipeline consisting of a morphology module and an
LFG grammar, using the LFG grammar development plat-
form XLE (Crouch et al., 2008).

2. Particularities of the Script

The Urdu script uses an extended Arabic character set. It
uses letters for consonants and aerabs (diacritics) for vow-
els. The combination of these realize a relatively rich
phonemic inventory. The use of aerabs, however, is not
very common in written Urdu, which gives rise to ambigu-
ity and makes it complicated for text-to-speech systems to
correctly interpret the string. To avoid problems due to am-
biguity, one module of the transliterator guesses the correct
vowels using a word form lexicon (section 3.2).
Urdu letters/characters can in general be mapped from
graphemes to phonemes in a regular, one-to-one fashion, so

that a simple rule-based model can be developed (Hussain,
2004). There are four types of characters in Urdu:

(1) simple consonant characters;
(2) dual (consonant and vocalic) behavior characters;
(3) vowel modifier character;
(4) consonant modifier character.

The characters in the first category can be rewritten in a
straightforward way, mapping them one-to-one. The char-
acters in the second category exhibit dual behavior, mean-
ing that they can refer to consonants in some contexts and
to vowels in other contexts. Rules have to be designed to
account for this behavior. The third category consists of the
vowel modifier characterNoon Ghunna, which nasalizes a
preceding vowel. The fourth category contains the charac-
ter Do-Chashmey Hay, which can combine with stops and
affricates to form aspirated forms of consonants.
Many words of Urdu are loan words from Arabic and Per-
sian, which were borrowed retaining the original spelling.
As a consequence, many Arabic/Persian graphemes map
onto a single Urdu phoneme — but the different Ara-
bic/Persian consonant characters are still used in written
Urdu. For example, the Urdu characters

	X , 	P , 	� and	  all map to the same sound/ z / (section 4.4.).
The Urdu script contains diacritics on consonant characters
to represent vowels. Vowel diacritics are combined with
consonants of category (1) to indicate short vowels; they
are combined with dual behavior characters of category (2)
to indicate long vowels.
All of these phenomena were dealt with by implement-
ing a pipeline of modules which are either rule-based or
lexicon-based, taking as input Unicode Urdu text and pro-
ducing Unicode Roman text based on a Roman translitera-
tion scheme as output.

3. Transliteration Scheme
Our broad coverage grammar will parse both Urdu and
Hindi, hence a transliteration scheme is designed to rep-
resent characters of Urdu and Hindi.

2921



The consonants are represented by the similar sound con-
sonant characters in roman letters. We define correspon-
dences between Unicode Urdu consonants and simple Ro-
man characters as in Table 2, which is shown at the end of
this document. The scheme is case-sensitive, hencet and
T represent two different consonants. In Urdu (and Hindi),
we have pairs of dental and retroflex consonants. The first
type of consonants are represented by small letters e.g.t
and d. The corresponding retroflexes are represented by
the capital letters i.e.T andD.
However, a capital letter does not always correspond to a
retroflex. The lettersSis used for voiceless palatal fricative
as used inshop. The letterN is used after long vowel to
represent nasalization. Similarly,H used after a consonant
represents the aspirated form of that consonant.
There are many loan words from Arabic and Persian that in-
clude graphemes from these languages, retained in the Urdu
spelling. As a consequence, there are several different Urdu
characters mapping to the same phoneme (e.g.,

	X , 	P , 	�
and 	  all map to the same sound/ z /). The translitera-
tion module maps the UZT sequence of the genuine Urdu
character to a general lettert; it maps the loan characters
to t2, t3, t4etc. For example, as	P is the most common

letter among the above, it is mapped toz.
	X , 	� and 	  are

mapped toz2, z3, z4respectively. As a result, the lexicon
is kept simple to read in most of the cases.
Urdu has 3 short and 8 long vowels. The long vowels also
have nasalized versions that are represented by addingN
after the vowel. The short vowels are written as diactric
marks in Urdu script. Table 3 shows the short vowels used
after the consonantH. bay. As the diacrtic marks can not
be rendered without a consonant, we have to use a conso-
nant to show the shape and sequence of the diacritics and
vowels in Urdu script. The three short vowels area for
Zabar, i for Zerandu for Pesh. The long vowels are either
a dual consonant/vowel character, or a sequence of diactric
mark followed by these characters.
The Unicode characters are mapped to their UZT counter-
parts in step 3 of the pipeline, and to their Roman letter
equivalents of our scheme in step 4 of the pipeline.

4. Transliteration Pipeline Architecture
To transliterate from Unicode Urdu to our Roman let-
ter scheme, a component-based approach was taken and
a pipeline including several modules was implemented in
C++. Figure 1 shows the overall architecture of the translit-
erator. Each component in the pipeline is a standalone ap-
plication that can be used for other NLP tasks.

4.1. Normalization

In the Unicode standard notation of Arabic, some charac-
ters can be written in two forms: thecomposedform as in
(1a) and thedecomposedform (1b). In their composed
form, characters occur as a single entity in the Unicode
block (e.g. U+0622 for LongAlef). In their decomposed
form, characters are written by combining two or more Uni-
code characters (e.g. LongAlef can be combined out of
U+0627 and U+0653). To avoid a duplication of rules, the
input text was normalized to the composed character form;

character sequences like the one in (1b) are therefore nor-
malized to the composed form in (1a).

(1) a. composed form:

Alef madda:
Æ� ā

b. decomposed form:

Alef: � a

+ lengthening diacriticmadda: Æ�
4.2. Diacritization

The diacritization component deals with the problem of
the vowel diacritics. Urdu is normally written without any
aerabs (vowel diacritics), which makes it difficult to inter-
pret. This component uses the Urdu lexicon data developed
at the Center for Research in Urdu Language Processing
(CRULP), containing 80.000 diacritized Urdu words (Ijaz
and Hussain, 2007). The diacritization component places
aerabs in the input text by looking up the words in the Urdu
lexicon. If multiple options are available, the component
selects the first option encountered.
Choosing the first option results in loosing information,
since the right word might not always be the first one en-
countered. A possible improvement would be to give all
the possible word forms as output, keep them throughout
the pipeline and let the morphology and syntax modules
decide which is the correct one.

4.3. Unicode to Urdu Zabta Takhti (UZT) Conversion

The Urdu Zabta Takhti (UZT) encoding is a standard devel-
oped for Urdu language processing that maps every single
Unicode Urdu character onto a sequence of numbers (Hus-
sain and Afzal, 2001). For software development in Urdu,
there was no industry standard available like ASCII for En-
glish. UZT now provides such a standard and was included
for reasons of compatibility with other applications. An ex-
ample is shown in (2) fořcāb̄ı ‘key’.

(2) a. Urdu Unicode text
čāb̄ı úG.� A �g�b. UZT–converted text
čāb̄ı 898083120

4.4. Transliteration

This component applies transliteration rules which convert
the number-based UZT notation to the Roman letter-based
scheme. The rules are compiled into a finite-state machine
using the XFST toolset (Beesley and Karttunen, 2003).

(3) a. UZT–converted text
čāb̄ı 898083120

b. transliterated Roman letter-based notation
čāb̄ı cAbI

The transformation of UZT to our transliteration scheme is
not a simple one to one replacement. The dual (consonant

and vowel) charactersø , þ , ð and
�� can be transliterated

in different ways based on the context.
When � Alef is used at the beginning of a word, it is used

as a dummy consonant for carrying the vowels. Hence� at

2922



Input

Unicode Urdu Text
↓

Normalization

Normalize input text to composed form
↓

Diacritization

Add aerabs to normalized text
↓

Unicode to UZT Conversion

Convert Unicode encoding to UZT
↓

Transliteration

Transliterate UZT code into Roman letter-based scheme using XFST
↓

Output

Roman Letter-Based scheme Transliteration

Figure 1: Cascaded Transliterator Architecture

the beginning of the word is transliterated to null. At other

places, it is transliterated as a long vowelA. The wordH. ��
ab is composed out of the vowel� Alef, the diacriticZabar

and the consonantH. bay. As � appears at word initial
position, it is not transliterated; we getab as its transliter-
ation. On the other hand, the wordAK. AK. has � Alef at non-
initial position, hence it is transliterated into the vowel, and
the output isbAbA.

The handling of the characterø Chooti-ye is more com-
plex. It can represent the consonanty or the vowelsI, E
ande. If it is preceeded by the diacriticsZeror Pesh, then
it is considered as part of the vowel combination, and the
previous vowel andChooti-yeare transliterated as one sin-
gle vowel. Zabar, andChooti-yeare transliterated ase
andZerandChooti-yeare transliterated asI. If there is no
vowel before it, then it is transliterated asE.

The examples areÉJ
Ó� ‘mile’, ÉJ
Ó ‘meeting’ and ÉJ
 �Ó
‘dirt/filth’. As ÉJ
Ó� has aZer beforeChooti-ye, it is

transliterated asmIl, ÉJ
 �Ó has a zabar beforeChooti-ye,

hence it is transliterated asmel. There is no diacritic pre-
ceedingChooti-yein ÉJ
Ó , hence it is transliterated asmEl.

On the other hand, ifChooti-yeis followed by a vowel
or vowel combination, then it is transliterated as consonant
y. The word XA�J
 	��K. has vowelZabar and Alef following

Chooti-ye. Hence, it is transliterated asbunyAd.

5. Evaluation of the Transliterator

A sample data set of 1000 unique high frequency words
was compiled. The data was taken from an 18 million word
Urdu corpus (Hussain, 2008) collected from two news web-

sites.1 The frequency is calculated simply by counting the
occurrence of a particular word:

(4) Frequency:F (Wi); 0 < i <= N

Wi is a unique word,F (Wi) its number of occurrences,i
the word index, andN the size of the corpus. The accuracy
of the system given the test corpus was then calculated as
in (5).

(5) Accuracy:A = Cw/Tw

A stands for the accuracy of the system,Cw for the words
correctly transliterated andTw for the total number of
words taken as input. The results are given in Table 1. The
system successfully and accurately transliterates 99.5% of
the data, if the data is fully diacritized. However, the accu-
racy is reduced to 92.5% for data containing non-diacritized
and foreign words. Accuracy was checked manually.

6. Integration of the Transliterator in XLE
The XLE platform is used by grammar writers to develop
and load an LFG grammar and produce syntactic structures
— C- and F-Structures (Dalrymple, 2001). Before anno-
tating syntactic structure, the program can break input text
into sentences, tokenize sentences into words and look up
words in lexicons. All of these pre-processing steps are
usually handled via finite-state transducers (Kaplan et al.,
2004).
The grammar developed in the Urdu ParGram project uses
the same basic architecture. After tokenization, XLE looks
up tokens in a computational morphology developed using
XFST (Bögel et al., 2007; Beesley and Karttunen, 2003).

1Jang Urdu (http://www.jang.net/Urdu/), BBC Urdu
(http://www.bbc.co.uk/urdu/)

2923



Test Corpus Size A = Cw/Tw (diacritized input) A = Cw/Tw (input without diacritics,
with foreign words)

1000 0.995 0.925

Table 1: Accuracy Results

The morphology is encoded using the Roman translitera-
tion of Urdu. Thus, both Urdu and Hindi will be able to be
processed via a single lexicon file, grammar and morpho-
logical component. This not only facilitates lexicon devel-
opment, but also reduces the grammar development effort.
The Urdu transliterator is integrated into the front-end of
XLE. The transliterator takes an Urdu Unicode file as input
and produces a Roman transliteration encoded in Unicode
(UTF-8) as described in section 3. The transliterated sen-
tence is fed into the remaining XLE pipeline consisting of
the morphology and the syntax. That is, if we feed the Urdu
script sentence in (6a) into XLE, we get the right side of
(6b) as output from the transliterator.

(6) a. example (gARI calI ‘The car worked/started.’):
gār. ı̄ čāl̄ı úÎ� �g� ø �P�A �Çb. transliterator output:
gār. ı̄ čal̄ı gARI calI

Next, the tokenizer inserts token boundaries (TB), so that
XLE can identify individual tokens to look up in the XFST
morphology.

(7) a. tokenizer input:
gār. ı̄ čal̄ı gARI calI

b. tokenizer output:
gār. ı̄ čal̄ı gARI TB calI TB

XLE then passes the individual tokens on to the morphol-
ogy, which consists of a finite-state transducer producing
a sequence of morphosyntactic tags for each of the input
tokens as in (8).

(8) morphology output:
gār. ı̄ gARI+Noun+Fem+Sg
čal̄ı calI+Verb+Perf+Fem+Sg

The morphology output is given back to XLE, which feeds
each of the tokens including their attached tags into the syn-
tax module, which then produces syntactic structures based
on the LFG framework. The process is shown here for the
example in (6a). Sublexical rules attach the morphological
tags to the correct lexical categories as in Figure 1. Func-
tionally annotated syntactic rules produce C-Structures as
given in Figure 2 and F-Structures as given in Figure 3. The
C- and F-structures follow the guidelines established by the
ParGram Project (Butt et al., 1999; Butt et al., 2002).

7. Conclusion and Future Work
We presented a transliterator that converts Unicode Urdu
script to Unicode based on an Roman letter transliteration
scheme using a cascaded sequence of modules. We suc-
cessfully dealt with language specific problems like mul-
tiple characters for one sound and diacritization. We ab-
stracted away from the script to a Roman transliteration in

CS 1: N

NOUN-S_BASE

gAR

N-T_BASE

+Noun

GEND_BASE

+Fem

NUM_BASE

+Sg

CS 1: V

V-S_BASE

cal

V-T_BASE

+Verb

PERF_SFX_BASE

+Perf

V-GEND_SFX_BASE

+Fem

V-NUM_SFX_BASE

+Sg

Figure 1: Lexical analysis in XLE with morphological tags

CS 1: ROOT

S

KP

NP

N

gARI

VCmain

V

calI

Figure 2: Example C-Structure in XLE

"gARI calI"

'cal<[1:gAR]>'PRED

'gAR'PRED

countCOMMONNSEM

commonNSYN
NTYPE

CASE nom, GEND fem, NUM sg, PERS 31

SUBJ

infl_MTYPE_VMORPH

_RESTRICTED -, _VFORM perf
CHECK

-AGENTIVELEX-SEM

ASPECT perf, MOOD indicativeTNS-ASP

CLAUSE-TYPE decl, PASSIVE -, VTYPE main17

Figure 3: Example F-Structure in XLE

order to eventually parse both Urdu and Hindi. The translit-
erator has been successfully integrated into the Urdu Par-
Gram grammar.
However, there is an issue with generation since the present
C++ transliterator is not bidirectional. One solution we are
exploring is to reimplement the transliteration cascade in
terms of a finite-state transducer (e.g., as sketched in Malik
(2006)), which is inherently bidirectional.
As it is, we have built and integrated an initial transliter-
ator with high accuracy (and efficient performance) into
the existing Urdu ParGram grammar, thus leaving the door
open to parse Hindi as well with just a minimum of addi-
tional grammar development effort. In addition, the entire
transliterator can not only be used as a stand-alone module,
just parts of it could also be used, so that one could convert
to UZT instead of the Roman transliteration scheme, for
example, depending on the application. The transliterator
thus allows for maximum flexibility while providing high
accuracy due to the built-in lexicon and its deterministic
rule-based character.

2924



8. References
Kenneth Beesley and Lauri Karttunen. 2003.Finite State

Morphology. CSLI Publications, Stanford, CA.
Tina Bögel, Miriam Butt, Annette Hautli, and Sebastian

Sulger. 2007. Developing a finite-state morphological
analyzer for Urdu and Hindi. InProceedings of the
Sixth International Workshop on Finite-State Meth-
ods and Natural Language Processing, Potsdam.

Miriam Butt, Tracy H. King, Marı́a-Eugenia Niño, and
Frédérique Segond. 1999.A Grammar Writer’s
Cookbook. CSLI Publications.

Miriam Butt, Helge Dyvik, Tracy H. King, Hiroshi
Masuichi, and Christian Rohrer. 2002. The Parallel
Grammar project. InProceedings of COLING-2002,
Workshop on Grammar Engineering and Evalua-
tion, pages 1–7, Taipei.

Dick Crouch, Mary Dalrymple, Ronald M. Kaplan,
Tracy Holloway King, John T. Maxwell III, and Paula
Newman, 2008.XLE Documentation. Palo Alto Re-
search Center.

Mary Dalrymple. 2001.Lexical Functional Grammar.
Academic Press.

Sarmad Hussain and Muhammad Afzal. 2001. Urdu com-
puting standards: Urdu zabta takhti (uzt) 1.01. InPro-
ceedings of the 2001 IEEE International Multi-
Topic Conference, pages 223–228.

Sarmad Hussain. 2004. Letter-to-sound conversion
for Urdu text-to-speech system. InProceedings of
COLING-2004, Workshop on Arabic Script Based
Languages, Geneva, Switzerland.

Sarmad Hussain. 2008. Resources for Urdu Language
Processing. InProceedings of the 6th Workshop on
Asian Language Resources, IIIT Hyderabad.

Madiha Ijaz and Sarmad Hussain. 2007. Corpus based
Urdu lexicon development. InProceedings of the
Conference on Language and Technology 2007
(CLT07), University of Peshawar, Pakistan.

Ronald M. Kaplan, John T. Maxwell III, Tracy H. King, and
Richard Crouch. 2004. Integrating finite-state technol-
ogy with deep LFG grammars. InProceedings of ESS-
LLI, Workshop on Combining Shallow and Deep
Processing for NLP.

Abbas Malik. 2006. Hindi Urdu machine transliteration
system. MSc Thesis, University of Paris 7.

2925



Unicode Urdu character Roman letter
in transliteration schemeH. bH� p�H t�H T�H s2h. jh� ch h2p xX d�X D	X z2P r�P R�P y2	P z� s�� S,S2� s3	� z3  t2	  z4¨ a2	̈

G	¬ f�� q¸ kÀ gÈ l� m	à nè hè t3ð vë Hà Nø y

Table 2: Transliteration Scheme for consonants

2926



Urdu vowel (with consonantH. ) Urdu names of vowel characters Roman letter

in transliteration scheme�H. Zabar baH.� Zer bi�H. Pesh buA�K. Zabar Alif bAúG.� Zer Chooti-ye bIñ�K. Pesh Wao bUñK. Wao bOñ�K. Zabar Wao boÿ�. Chooti/Bari-ye bEÿ ��. Zabar Chooti/Bari-ye be

Table 3: Transliteration Scheme for vowels. The vowels withconsonantH. bay
.

2927


