Transliterating Urdu for a Broad-Coverage Urdu/Hindi LFG G rammar

Muhammad Kamran Malik i, Tafseer Ahmed;, Sebastian Sulget,
Tina Bogelf, Atif Gulzar {, Ghulam Razaf, Sarmad Hussairt, Miriam Butt

tUniversitat Konstanz;CRULP FAST NUCES
tKonstanz, GermanyLahore, Pakistan
sebastian.sulger@uni-konstanz.de

Abstract

In this paper, we present a system for transliterating treisrbased script of Urdu to a Roman transliteration schefite system
is integrated into a larger system consisting of a morphologdule, implemented via finite state technologies, andnapcational
LFG grammar of Urdu that was developed with the grammar deveént platform XLE (Crouch et al. 2008). Our long-term gisal
to handle Hindi alongside Urdu; the two languages are venyiai with respect to syntax and lexicon and hence, one granuan be
used to cover both languages. However, they are not sindlarerning the script — Hindi is written in Devanagari, wHiledu uses an
Arabic-based script. By abstracting away to a common Romansliteration scheme in the respective transliteratmrs system can
be enabled to handle both languages in parallel. In thisrpagmediscuss the pipeline architecture of the Urdu-Romansliterator,
mention several linguistic and orthographic issues anslgotethe integration of the transliterator into the LFG paysystem.

1. Introduction that a simple rule-based model can be developed (Hussain,

This paper introduces a Roman transliterator for the Urdu2004)' There are four types of characters in Urdu:

Arabic-based script, which is used as part of a broad-(1) simple consonant characters;

coverage grammar for the South Asian language Urdu(2) dual (consonant and vocalic) behavior characters;
being developed within the ParGram (Parallel Grammar)(3) vowel modifier character;

project (Butt et al., 1999; Butt et al., 2002). Very few
resources exist for Urdu and part of the project is to
build a broad-coverage finite-state morphological analyzeThe characters in the first category can be rewritten in a
for Urdu and to connect it up with the grammar via Straightforward way, mapping them one-to-one. The char-
the morphology-syntax interface, defined by Kaplan et alacters in the second category exhibit dual behavior, mean-

(2004) for Lexical-Functional Grammar (LFG) (Dalrym- ing that they can refer to consonants in some contexts and
ple, 2001). to vowels in other contexts. Rules have to be designed to

Hindi, although being very similar to Urdu, is written in accountfor.t_his behavior. The third category consi_stsef th
a different script: Devanagari. Since the goal of the Urduvowel modifier characteoon Ghunnawhich nasalizes a
Grammar project is to eventually be able to process botfréceding vowel. The fourth category contains the charac-
Urdu and Hindi text, our approach is to abstract away®r Do-Chashmey Haywhich can combine with stops and
from both of the scripts to a common Roman transliteratiorgffricates to form aspirated forms of consonants.

scheme. This will allow us to use just one morphologicalMany words of Urdu are loan words from Arabic and Per-
analyzer and one LFG grammar for both languages. As &an, which were borrowed retammg thg original spelling.
first step, we have developed a transliterator for Urdu via £'S @ consequence, many Arabic/Persian graphemes map
cascaded set of tools written in C++. This paper present@nto @ single Urdu phoneme — but the different Ara-
the toolset as well as the integration of the transliteratoRiC/Persian consonant characters are still used in written
into the pipeline consisting of a morphology module and anJrdu. For example, the Urdu characters , = and
LFG grammar, using the LFG grammar development plat-L all map to the same soud / (section 4.4.).

(4) consonant modifier character.

form XLE (Crouch et al., 2008). The Urdu script contains diacritics on consonant character
to represent vowels. Vowel diacritics are combined with
2. Particularities of the Script consonants of category (1) to indicate short vowels; they

)) are combined with dual behavior characters of category (2)
The Urdu script uses an extended Arabic character set. t jngicate long vowels.

uses letters for consonants and aerabs (diacritics) for vowa|| of these phenomena were dealt with by implement-
phonemic inventory. The use of aerabs, however, is Nojfexjcon-based, taking as input Unicode Urdu text and pro-

very common in written Urdu, which gives rise to ambigu- gycing Unicode Roman text based on a Roman translitera-
ity and makes it complicated for text-to-speech systems tgon scheme as output.

correctly interpret the string. To avoid problems due to am- .)

biguity, one module of the transliterator guesses the corre 3. Transliteration Scheme

vowels using a word form lexicon (section 3.2). Our broad coverage grammar will parse both Urdu and
Urdu letters/characters can in general be mapped frorhlindi, hence a transliteration scheme is designed to rep-
graphemes to phonemes in a regular, one-to-one fashion, sesent characters of Urdu and Hindi.

2921

The consonants are represented by the similar sound cooharacter sequences like the one in (1b) are therefore nor-
sonant characters in roman letters. We define correspomralized to the composed form in (1a).

dences between Unicode Urdu consonants and simple Ro-
man characters as in Table 2, which is shown at the end ofl) & composed f(irm:
this document. The scheme is case-sensitive, heace Alef maddal a

T represent two different consonants. In Urdu (and Hindi), b. decomposed form:
we have pairs of dental and retroflex consonants. The first

type of consonants are represented by small letterste.g. Alef: | a
andd. The corresponding retroflexes are represented by + lengthening diacritienadda =

the capital letters i.eT andD.

However, a capital letter does not always correspond to 4.2. Diacritization

retroflex. The letterSis used for voiceless palatal fricative The diacritization component deals with the problem of
as used irshop The letterN is used after long vowel to the vowel diacritics. Urdu is normally written without any
represent nasalization. Similark, used after a consonant aerabs (vowel diacritics), which makes it difficult to inter
represents the aspirated form of that consonant. pret. This component uses the Urdu lexicon data developed
There are many loan words from Arabic and Persian that ingt the Center for Research in Urdu Language Processing
clude graphemes from these languages, retained in the Urd@RULP), containing 80.000 diacritized Urdu words (ljaz
spelling. As a consequence, there are several different Urdand Hussain, 2007). The diacritization component places
characters mapping to the same phoneme (&.g;, u? aerabsinthe input text by looking up the words in the Urdu
and L all map to the same sourldz /). The translitera- lexicon. If multiple_ options are available, the component
tion module maps the UZT sequence of the genuine Urd§€lects the first option encountered. o _
character to a general letttrit maps the loan characters Choosing the first option results in loosing information,

to 2, 13, tdetc. For example, agis the most common since the right word might not always be the first one en-
T ' ’ countered. A possible improvement would be to give all

letter among the above, itis mappedzta, ,>andlare he possible word forms as output, keep them throughout

mapped t@2, z3, z4espectively. As a result, the lexicon the pipeline and let the morphology and syntax modules
is kept simple to read in most of the cases. decide which is the correct one.

Urdu has 3 short and 8 long vowels. The long vowels also

have nasalized versions that are represented by addiing 4.3. Unicode to Urdu Zabta Takhti (UZT) Conversion

after the vowel. The short vowels are written as diactricThe Urdu Zabta Takhti (UZT) encoding is a standard devel-
marks in Urdu script. Table 3 shows the short vowels use@ped for Urdu language processing that maps every single
after the consonants bay. As the diacrtic marks can not Unicode Urdu character onto a sequence of numbers (Hus-
be rendered without a consonant, we have to use a conseain and Afzal, 2001). For software development in Urdu,
nant to show the shape and sequence of the diacritics antlere was no industry standard available like ASCII for En-
vowels in Urdu script. The three short vowels ador glish. UZT now provides such a standard and was included
Zabar, i for Zerandu for Pesh The long vowels are either for reasons of compatibility with other applications. An ex

a dual consonant/vowel character, or a sequence of diactreimple is shown in (2) fo€abi ‘key’.

mark followed by these characters.

The Unicode characters are mapped to their UZT counter—(z) a. Urdu Unicode text

parts in step 3 of the pipeline, and to their Roman letter cabi =
equivalents of our scheme in step 4 of the pipeline. b. UZT—converted text d’ >
cabi 898083120

4. Transliteration Pipeline Architecture

To transliterate from Unicode Urdu to our Roman let- 4-4- Transliteration

ter scheme, a component-based approach was taken amblis component applies transliteration rules which conver
a pipeline including several modules was implemented irthe number-based UZT notation to the Roman letter-based
C++. Figure 1 shows the overall architecture of the translit Scheme. The rules are compiled into a finite-state machine
erator. Each component in the pipeline is a standalone apising the XFST toolset (Beesley and Karttunen, 2003).

plication that can be used for other NLP tasks.
(3) a. UZT—converted text

4.1. Normalization cabi 898083120
))) b. transliterated Roman letter-based notation
In the Unicode standard notation of Arabic, some charac- cabr cAbl

ters can be written in two forms: tteomposedorm as in

(1a) and thedecomposetbrm (1b). In their composed The transformation of UZT to our transliteration scheme is
form, characters occur as a single entity in the Unicodenot a simple one to one replacement. The dual (consonant
block (e.g. U+0622 for Londlef). In their decomposed 5nq yowel) characters, o, and! can be transliterated
form, characters are written by combining two or more Uni-. .
code characters (e.g. Lomgef can be combined out of in different Ways based on the gohtext. .
U+0627 and U+0653). To avoid a duplication of rules, theWhen‘AIef is used at the beginning of a word, it is used
input text was normalized to the composed character formas a dummy consonant for carrying the vowels. Helrate

2922

| Input |

Unicode Urdu Text

!

| Normalization |

Normalize input text to composed form

!

| Diacritization |

Add aerabs to normalized text
!

| Unicode to UZT Conversion |

Convert Unicode encoding to UZT
|

| Transliteration |

Transliterate UZT code into Roman letter-based schemegu&isT

!
‘ Output ‘

Roman Letter-Based scheme Transliteration

Figure 1: Cascaded Transliterator Architecture

the beginning of the word is transliterated to null. At othersites! The frequency is calculated simply by counting the
places, it is transliterated as a long vowelThe word_,| ~ occurrence of a particular word:

abis composed out of the vow&Alef, the diacriticZabar (4) FrequencyF(W;);0 <i <= N

and the consonant, bay. As | appears at word initial
position, it is not transliterated; we gab as its transliter-
ation. On the other hand, the wotd, has! Alefat non-

initial position, hence it is transliterated into the voyeshd
the output ibAbA

The handling of the charactgg Chooti-ye is more com- (5) Accuracy:A = Cy, /Ty,

plex. It can represent the consongndr the vowelsl, E

ande. If it is preceeded by the diacriticder or Peshthen A stands for the accuracy of the systef), for the words

it is considered as part of the vowel combination, and thecorrectly transliterated and;, for the total number of
previous vowel an€hooti-yeare transliterated as one sin- words taken as input. The results are given in Table 1. The
gle vowel. Zabar, and Chooti-yeare transliterated a8 system successfully and accurately transliterates 995% o
andZerandChooti-yeare transliterated ds|f there isno the data, if the data is fully diacritized. However, the accu
vowel before it, then it is transliterated &s racy is reduced to 92.5% for data containing non-diacidtize

The examples aredﬁ ‘mile’, J..e ‘meeting’ andJ:L and foreign words. Accuracy was checked manually.

dirtffith’. As Je has aZer beforeChooti-ye itis 6. |ntegration of the Transliterator in XLE

transliterated asnll, |} has a zabar befor€hooti-ye The XLE platform is used by grammar writers to develop
hence it is transliterated amel There is no diacritic pre- &nd load an LFG grammar and produce syntactic structures
ceedingChooti-yein }., henceitis transliterated asEl — C- and F-Structures (Dalrymple, 2001). Before anno-
tating syntactic structure, the program can break input tex
On the other hand, iChooti-yeis followed by a vowel into sentences, tokenize sentences into words and look up
or vowel combination, then it is transliterated as consbnanwords in lexicons. All of these pre-processing steps are
y. The word s\{ has vowelZabar and Alef following usually handled via finite-state transducers (Kaplan et al.
Chooti-ye Hence, it is transliterated dsinyAd 2004).
The grammar developed in the Urdu ParGram project uses
the same basic architecture. After tokenization, XLE looks
5. Evaluation of the Transliterator up tokens in a computational morphology developed using
XFST (Bogel et al., 2007; Beesley and Karttunen, 2003).
A sample data set of 1000 unique high frequency words
was compiled. The data was taken from an 18 millionword 'Jang Urdu (http://www.jang.net/Urdu/), BBC Urdu
Urdu corpus (Hussain, 2008) collected from two news web-{http://www.bbc.co.uk/urdu/)

W is a unique wordF'(1¥;) its number of occurrences,

the word index, andV the size of the corpus. The accuracy
of the system given the test corpus was then calculated as
in (5).

2923

Test Corpus Size A = C,, /Ty, (diacritized input)| A = C,, /T, (input without diacritics,

with foreign words)

1000 0.995 0.925
Table 1: Accuracy Results
The morphology is encoded using the Roman translitera- cst: N

tion of Urdu. Thus, both Urdu and Hindi will be able to be
processed via a single lexicon file, grammar and morpho-
logical component. This not only facilitates lexicon devel
opment, but also reduces the grammar development effort.

NOUN-S_BASEN-T_BASE GEND_BASENUM_BAS

gAR +Noun +Fem +Sg
CS1: \%

The Urdu transliterator is integrated into the front-end of v-S_BASE v-T_BASE PERF_SFX_BASE/-GEND_SFX_BASE/-NUM_SFX_BAS

XLE. The transliterator takes an Urdu Unicode file as input

and produces a Roman transliteration encoded in Unicode

+Verb +Perf +Fem +Sg

(UTF-8) as described in section 3. The transliterated Se”Figure 1: Lexical analysis in XLE with morphological tags

tence is fed into the remaining XLE pipeline consisting of

the morphology and the syntax. That s, if we feed the Urdu cs1: ROOT
script sentence in (6a) into XLE, we get the right side of ‘s
(6b) as output from the transliterator.
(6) a. exampledARI call‘The car worked/started.’): K‘P vemain

gar cali NPV

. o |
b. transliterator output: J"’ < T el
gari cali gARI call gARI

Next, the tokenizer inserts token boundaries (TB), so that

Figure 2: Example C-Structure in XLE

XLE can identify individual tokens to look up in the XFST
morphology. "gARI call"

PRED ‘cal<[1:gARP'

(7) a. tokenizerinput: PRED 'gAR

gar call gARI call uss INTvPE [NSEM[COMMONount]
X NSYNcommon
b. tokenizer output: 1|CASE nom, GEND fem, NUM sg, PERS 3
gari cali gARI TB call TB cHECK EVMORPI-LMTYPEinﬂ]]
RESTRICTED-, _VFORM perf

XLE then passes the individual tokens on to the morphol- LEX-SEM [AGENTIVE]
TNS-ASP [ASPECT perf, MOOD indicative]

ogy, which consists of a finite-state transducer producing 17|CLAUSE TYPEdec, PASSIVE -, VTYPE main
a sequence of morphosyntactic tags for each of the input
tokens as in (8).

Figure 3: Example F-Structure in XLE
(8) morphology output:
gari gARI+Noun+Fem+Sg

Eall call+Verb+Perf+Fem+Sg order to eventually parse both Urdu and Hindi. The translit-

erator has been successfully integrated into the Urdu Par-
The morphology output is given back to XLE, which feeds Gram grammar.
each of the tokens including their attached tags into the syrHowever, there is an issue with generation since the present
tax module, which then produces syntactic structures base@d++ transliterator is not bidirectional. One solution we ar
on the LFG framework. The process is shown here for theexploring is to reimplement the transliteration cascade in
example in (6a). Sublexical rules attach the morphologicaterms of a finite-state transducer (e.g., as sketched irkMali
tags to the correct lexical categories as in Figure 1. Funcf2006)), which is inherently bidirectional.
tionally annotated syntactic rules produce C-Structuges aAs it is, we have built and integrated an initial transliter-
given in Figure 2 and F-Structures as given in Figure 3. Thetor with high accuracy (and efficient performance) into
C- and F-structures follow the guidelines established by th the existing Urdu ParGram grammar, thus leaving the door
ParGram Project (Butt et al., 1999; Butt et al., 2002). open to parse Hindi as well with just a minimum of addi-
. tional grammar development effort. In addition, the entire
7. Conclusion and Future Work transliterator can not only be used as a stand-alone module,
We presented a transliterator that converts Unicode Urdjust parts of it could also be used, so that one could convert
script to Unicode based on an Roman letter transliteratiomo UZT instead of the Roman transliteration scheme, for
scheme using a cascaded sequence of modules. We swxample, depending on the application. The transliterator
cessfully dealt with language specific problems like mul-thus allows for maximum flexibility while providing high
tiple characters for one sound and diacritization. We abaccuracy due to the built-in lexicon and its deterministic
stracted away from the script to a Roman transliteration irrule-based character.

2924

8. References

Kenneth Beesley and Lauri Karttunen. 20@#nite State
Morphology CSLI Publications, Stanford, CA.

Tina Bogel, Miriam Butt, Annette Hautli, and Sebastian
Sulger. 2007. Developing a finite-state morphological
analyzer for Urdu and Hindi. IfProceedings of the
Sixth International Workshop on Finite-State Meth-
ods and Natural Language Processjirgtsdam.

Miriam Butt, Tracy H. King, Maria-Eugenia Nifio, and
Frédérigue Segond. 1999A Grammar Writer's
Cookbook CSLI Publications.

Miriam Butt, Helge Dyvik, Tracy H. King, Hiroshi
Masuichi, and Christian Rohrer. 2002. The Parallel
Grammar project. IfProceedings of COLING-2002,
Workshop on Grammar Engineering and Evalua-
tion, pages 1-7, Taipei.

Dick Crouch, Mary Dalrymple, Ronald M. Kaplan,
Tracy Holloway King, John T. Maxwell 1ll, and Paula
Newman, 2008 XLE DocumentationPalo Alto Re-
search Center.

Mary Dalrymple. 2001 .Lexical Functional Grammar
Academic Press.

Sarmad Hussain and Muhammad Afzal. 2001. Urdu com-
puting standards: Urdu zabta takhti (uzt) 1.01.Pro-
ceedings of the 2001 IEEE International Multi-
Topic Conferencgpages 223-228.

Sarmad Hussain. 2004. Letter-to-sound conversion
for Urdu text-to-speech system. IRroceedings of
COLING-2004, Workshop on Arabic Script Based
LanguagesGeneva, Switzerland.

Sarmad Hussain. 2008. Resources for Urdu Language
Processing. IfProceedings of the 6th Workshop on
Asian Language Resourcéi$T Hyderabad.

Madiha ljaz and Sarmad Hussain. 2007. Corpus based
Urdu lexicon development. IfProceedings of the
Conference on Language and Technology 2007
(CLTQ7) University of Peshawar, Pakistan.

Ronald M. Kaplan, John T. Maxwell Ill, Tracy H. King, and
Richard Crouch. 2004. Integrating finite-state technol-
ogy with deep LFG grammars. Froceedings of ESS-
LLI, Workshop on Combining Shallow and Deep
Processing for NLP

Abbas Malik. 2006. Hindi Urdu machine transliteration
system. MSc Thesis, University of Paris 7.

2925

Unicode Urdu charactefr Roman letter

in transliteration schemg¢

GGG

A NG NO N

[V

o v . (GG Qrere 7 G § GG W oL b

o

C b L

S

b
p

t
T
s2

h2

5,82
s3
z3
t2
z4
a2

> 5 3 — @@ X o =

—
w

< Z2 I <

Table 2: Transliteration Scheme for consonants

2926

Urdu vowel (with consonant)

Urdu names of vowel characte

[S

Roman letter

in transliteration schem

Kaw .(\. \.(.(\

NN tecte tel (e

Zabar
Zer
Pesh
Zabar Alif
Zer Chooti-ye
Pesh Wao
Wao
Zabar Wao
Chooti/Bari-ye
Zabar Chooti/Bari-ye

ba
bi
bu
bA
bl

buU
bO
bo
bE
be

Table 3: Transliteration Scheme for vowels. The vowels withsonant_ bay

2927

