Introduction. Set Theory.

1. Frege's Compositionality Principle.

- One central assumption in current semantic theory is the Principle of Compositionality from Frege:

 (1) **PRINCIPLE OF COMPOSITIONALITY**: The meaning of a complex expression is determined by the meaning of its parts and the way those parts are combined.

- We need to find out:
 - The meaning of each sentence part: word or larger phrase.
 - The semantic contribution of the way the parts are combined.
 - The meaning corresponding to an entire sentence.

2. The meaning of a sentence: Truth-conditional semantics.

- Truth-conditional approach to the meaning of sentences:

 (3) To know the meaning of a sentence is to know under which conditions—more technically, in which worlds or sit—that sentence is true.

- Model:
 - Worlds \(W_1, W_2, W_3, W_4, \ldots W_{10}\): worlds where Maribel lives in Paradies.
 - Worlds \(W_{11}, W_{12}, W_{13}, W_{14}, \ldots W_{20}\): worlds where Maribel lives in Petershausen.

- Maribel lives in Paradies.

- Hence, a theory of meaning pairs sentences with truth-conditions:

 (6) For any world \(w\), the interpretation function \(\langle \rangle\) takes a linguistic expression as input and yields as output its meaning / denotation in the specific world \(w\).

- Digression: object language vs. metalanguage.
 - The language whose semantics we are studying—namely, English, represented in boldface—is our object-language. In order to talk about it, though, we have to use a language too, our metalanguage. Our metalanguage happens to be English—normal font—enhanced with some symbols.

3. The meaning of words and phrases.

- Some phrases and words can be used to stand for or denote a concrete individual in the world. Instead of using that word or phrase, you could simply point at the real object in the actual world. The following are some examples:

 (8) Proper names:
 - Maribel, Lucia, Konstanz, Bodensee, G300.

 (9) Noun phrases with demonstratives:
 - This table here, that window over there, these chairs, those pens.

 QUESTION 1: Can we give the same treatment to the definite Noun Phrases in (10)? Compare them with (8).

 (10) Definite Noun Phrases:
 - the tallest mountain in the Pyrenees
 - the president of the USA in 2010

 (11) a. \([\text{Lucia}]^{\circ} = \)

 b. \([\text{Lucia}]^{\ast7} = \)

 (12) a. \([\text{the president of the USA in 2010}]^{\circ} = \)

 b. \([\text{the president of the USA in 2010}]^{\ast7} = \)

- However, some other phrases and words do not stand for or denote a concrete object:

 (13) Non-referential Noun Phrases:
 - a. No student is sick.
 - b. Every woman, talked to the cat sitting on her lap.

 (14) Verbs and adjectives:
 - Run, see, put, red, tall, blond.
Current semantic theory proposes to treat meanings as set-theoretic objects. Some Noun Phrases stand for or denote concrete individuals in the world, but other phrases denote more abstract entities: a set of individuals, a set of pairs of individuals, a relation between sets of individuals, etc.

(15) \[\text{blond} \] = \{ Karen, Al, Patrick \}

\[\Rightarrow \text{Set Theory} \]

4. Set Theory

4.1 Sets.

(16) A set is a collection of objects, unordered.

(17) \{ a, b, c \}

\{ x: x \text{ snores} \}

\{ x: x \text{ is a multiple of } 3 \}

(18) An object \(a \) is an ELEMENT of a set \(A \) (\(a \in A \)) if that object is a member of the collection \(A \).

E.g.: \(a \in \{ a, b, c \} \)

\(9 \in \{ x: x \text{ is a multiple of } 3 \} \)

(19) A set \(A \) is a SUBSET of a set \(B \) (\(A \subseteq B \)) if all the elements of \(A \) are also in \(B \).

(20) The INTERSECTION of two sets \(A \) and \(B \) (\(A \cap B \)) is the set containing all and only the objects that are elements of both \(A \) and \(B \).

(21) The UNION of two sets \(A \) and \(B \) (\(A \cup B \)) is the set containing all and only the objects that are elements of \(A \), of \(B \), or of both \(A \) and \(B \).

(22) The COMPLEMENT of a set \(A \) (\(\bar{A} \text{ or } A' \)) is the set containing all the individuals in the discourse except for the elements of \(A \).

(23) The DIFFERENCE \(A - B \) is the set resulting from subtracting from \(A \) all the elements in \(B \). \(A - B \) is equivalent to \(A \cap \bar{B} \).

(24) The POWER SET of a set \(A \) (\(\mathcal{P}(A) \)) is the set whose members are all the subsets of \(A \).

QUESTION 2: Partee et al., chapter 1, exercise 1 p. 23.

QUESTION 3: Given the sets under (25) and assuming that the universe of the discourse is \(\cup \{ A, B, C, D, E, F, G \} \), list the members of the following sets:

(25) \(A = \{ 1, 2, 3, 4 \} \)

\(E = \{ 1, 2, \{ a, 1 \} \} \)

\(B = \{ a, b, c, d, e, f \} \)

\(F = \{ 1, c, d \} \)

\(C = \{ 1, 2 \} \)

\(G = \{ d, e, 2, 3 \} \)

\(D = \{ 1, 3, 4, a, b \} \)

(26) a. \(A \cap D = \)

b. \(A \cap B = \)

c. \(F \cap C = \)

d. \(C - D = \)

e. \(C - F' = \)

f. \(E \cap C = \)

g. (\(C \cup D \)) - (\(C \cap D \)) =

h. \(G \cap F = \)
i. \(B \cup E = \)

j. \((E \cup B) \cap D = \)

QUESTION 4 (for home): Partee et al., chapter 1, exercises 2, 6 and 7 (pp. 23-25).

4.2 Relations.

Ordered Pairs and Cartesian Product:

(27) Ordered pair/n-tuple: a set with n-elements where order matters. E.g.: \(<a, b>\)

(28) Cartesian Product:

\(A \times B = \{ (x, y): x \in A \text{ and } y \in B \} \)

Relations:

(29) A relation is a set of ordered pairs (or, more generally, of ordered n-tuple).

More formally, a relation from \(A \) to \(B \) is a subset of \(A \times B \).

(30) Relation "to be fond of", relation "to kiss", relation "to be the left of", etc.

(31) a. Domain of \(R \): \(\text{a}: \text{there is some b such that } <\text{a}, \text{b}> \in R \)

b. Range of \(R \): \(\text{b}: \text{there is some a such that } <\text{a}, \text{b}> \in R \)

4.3 Functions.

(32) A relation \(R \) from \(A \) to \(B \) is a function from \(A \) to \(B \) (\(F: A \rightarrow B \)) if:

a. Every member of \(A \) appears at least once as first member of a pair (except for partial "functions").

b. Every member of \(A \) appears at most once as first member of a pair.

(33) The function "to have as mother", the function "to be the successor of", etc.

\(F_{\text{have as mother}}(\text{maribel}) = \text{ramona} \)

\(F_{\text{successor}}(3) = 4 \)