A Reference Dependency Bank for Analyzing Complex Predicates

Tafseer Ahmed, Miriam Butt, Annette Hautli and Sebastian Sulger

Universität Konstanz

May 25th, 2012
LREC 2012
Context of Work

- computational LFG grammar in development in Konstanz
Context of Work

- computational LFG grammar in development in Konstanz
- aim: large-scale LFG grammar for parsing Urdu/Hindi ([Bögel et al. 2009], [Butt and King 2007])
Context of Work

- computational LFG grammar in development in Konstanz
- aim: large-scale LFG grammar for parsing Urdu/Hindi ([Bögel et al. 2009], [Butt and King 2007])
- grammar is part of the ParGram project
Context of Work

- computational LFG grammar in development in Konstanz
- aim: large-scale LFG grammar for parsing Urdu/Hindi ([Bögel et al. 2009], [Butt and King 2007])
- grammar is part of the ParGram project
 - collaborative, world-wide research project
Context of Work

- computational LFG grammar in development in Konstanz
- aim: large-scale LFG grammar for parsing Urdu/Hindi ([Bögel et al. 2009], [Butt and King 2007])
- grammar is part of the ParGram project
 - collaborative, world-wide research project
 - devoted to developing parallel LFG grammars for a variety of languages
Context of Work

- computational LFG grammar in development in Konstanz
- aim: large-scale LFG grammar for parsing Urdu/Hindi ([Bögel et al. 2009], [Butt and King 2007])
- grammar is part of the ParGram project
 - collaborative, world-wide research project
 - devoted to developing parallel LFG grammars for a variety of languages
 - features and analyses are kept parallel for easy transfer between languages
Context of Work

- computational LFG grammar in development in Konstanz
- aim: large-scale LFG grammar for parsing Urdu/Hindi ([Bögel et al. 2009], [Butt and King 2007])
- grammar is part of the ParGram project
 - collaborative, world-wide research project
 - devoted to developing parallel LFG grammars for a variety of languages
 - features and analyses are kept parallel for easy transfer between languages
 - languages involved:
Context of Work

- computational LFG grammar in development in Konstanz
- aim: large-scale LFG grammar for parsing Urdu/Hindi ([Bögel et al. 2009], [Butt and King 2007])
- grammar is part of the ParGram project
 - collaborative, world-wide research project
 - devoted to developing parallel LFG grammars for a variety of languages
 - features and analyses are kept parallel for easy transfer between languages
 - languages involved:
 - large-scale: English, German, French, Japanese, Norwegian
Context of Work

- computational LFG grammar in development in Konstanz
- aim: large-scale LFG grammar for parsing Urdu/Hindi ([Bögel et al. 2009], [Butt and King 2007])
- grammar is part of the ParGram project
 - collaborative, world-wide research project
 - devoted to developing parallel LFG grammars for a variety of languages
 - features and analyses are kept parallel for easy transfer between languages
 - languages involved:
 - large-scale: English, German, French, Japanese, Norwegian
 - smaller-scale (yet...): Welsh, Georgian, Hungarian, Turkish, Chinese, **Urdu** (among many others)
Complex Predicates?

- Urdu has about 700 basic verbs
Complex Predicates?

- Urdu has about 700 basic verbs
- vast majority of verbal predicates is constructed using complex predicates (CPs)
Complex Predicates?

- Urdu has about 700 basic verbs
- vast majority of verbal predicates is constructed using complex predicates (CPs)
- most other South Asian languages make use of CPs as well
Complex Predicates?

- Urdu has about 700 basic verbs
- vast majority of verbal predicates is constructed using complex predicates (CPs)
- most other South Asian languages make use of CPs as well
- knowing how to deal with CPs is essential for doing parsing/NLP for Hindi/Urdu and for South Asian languages in general
Complex Predicates?

- Urdu has about 700 basic verbs
- vast majority of verbal predicates is constructed using complex predicates (CPs)
- most other South Asian languages make use of CPs as well
- knowing how to deal with CPs is essential for doing parsing/NLP for Hindi/Urdu and for South Asian languages in general
 → provide a reference dependency bank that can guide teams working on NLP applications for South Asian languages (or really any language that has CPs)
Overview

1. Complex Predicates
2. Types of Complex Predicates
3. A Reference Dependency Bank for CPs
4. Conclusion
Overview

1. Complex Predicates
2. Types of Complex Predicates
3. A Reference Dependency Bank for CPs
4. Conclusion
Complex Predicates in General

- combinations of two or more predicates that predicate as a single unit
Complex Predicates in General

- combinations of two or more predicates that predicate as a single unit
- the arguments of the CP members map onto a monoclausal syntactic structure [Butt 1995]
Complex Predicates in General

- combinations of two or more predicates that predicate as a single unit
- the arguments of the CP members map onto a monoclausal syntactic structure [Butt 1995]
 - verb+verb, noun+verb, adj+verb, morphological causative
Complex Predicates in General

- combinations of two or more predicates that predicate as a single unit
- the arguments of the CP members map onto a monoclausal syntactic structure [Butt 1995]
 - verb+verb, noun+verb, adj+verb, morphological causative
 - examples from Urdu: ‘memory (N) do (V)’ = ‘remember’, ‘telephone (N) do (V)’ = ‘telephone’, ‘fear (N) come (V)’ = ‘fear’, ‘throw (V) give (V)’ = ‘throw away’
Complex Predicates in General

- combinations of two or more predicates that predicate as a single unit
- the arguments of the CP members map onto a monoclausal syntactic structure [Butt 1995]
 - verb+verb, noun+verb, adj+verb, morphological causative
 - examples from Urdu: ‘memory (N) do (V)’ = ‘remember’, ‘telephone (N) do (V)’ = ‘telephone’, ‘fear (N) come (V)’ = ‘fear’, ‘throw (V) give (V)’ = ‘throw away’

- often analyzed on a par with control constructions/auxiliaries/modal verbs, but:
Complex Predicates in General

- combinations of two or more predicates that predicate as a single unit
- the arguments of the CP members map onto a monoclausal syntactic structure [Butt 1995]
 - verb+verb, noun+verb, adj+verb, morphological causative
 - examples from Urdu: ‘memory (N) do (V)’ = ‘remember’, ‘telephone (N) do (V)’ = ‘telephone’, ‘fear (N) come (V)’ = ‘fear’, ‘throw (V) give (V)’ = ‘throw away’
- often analyzed on a par with control constructions/auxiliaries/modal verbs, but:
- their syntax & semantics in fact differs markedly from these constructions [Butt 2010]
Overview

1. Complex Predicates

2. Types of Complex Predicates

3. A Reference Dependency Bank for CPs

4. Conclusion
A Noun+Verb Complex Predicate

formed by combining a noun and a verb
A Noun+Verb Complex Predicate

- formed by combining a noun and a verb
 - noun uninflected, light verb inflected
A Noun+Verb Complex Predicate

- formed by combining a noun and a verb
 - noun uninflcted, light verb inflected
- both contribute to overall argument structure of clause
A Noun+Verb Complex Predicate

- formed by combining a noun and a verb
 - noun uninflected, light verb inflected
- both contribute to overall argument structure of clause
 - 1 argument from noun
A Noun+Verb Complex Predicate

- formed by combining a noun and a verb
 - noun uninflected, light verb inflected
- both contribute to overall argument structure of clause
 - 1 argument from noun
 - 2 arguments from verb
A Noun+Verb Complex Predicate

- formed by combining a noun and a verb
 - noun uninflected, light verb inflected
- both contribute to overall argument structure of clause
 - 1 argument from noun
 - 2 arguments from verb
 - combine into 3 arguments in resulting CP
A Noun + Verb Complex Predicate

- formed by combining a noun and a verb
 - noun uninflected, light verb inflected
- both contribute to overall argument structure of clause
 - 1 argument from noun
 - 2 arguments from verb
 - combine into 3 arguments in resulting CP

example: *Dar lag* ‘be frightened by’

nAdiyah kO hATHI sE Dar lag-A
Nadya.F.Sg Dat elephant.M.Sg Inst fear.M.Sg attach-Perf.M.Sg
‘Nadya was frightened by the elephant.’
A Noun+Verb Complex Predicate

- formed by combining a noun and a verb
 - noun uninflected, light verb inflected
- both contribute to overall argument structure of clause
 - 1 argument from noun
 - 2 arguments from verb
 - combine into 3 arguments in resulting CP
- example: *Dar lag* ‘be frightened by’

```
nAdiyah kO hATHI sE Dar lag-A
Nadya.F.Sg Dat elephant.M.Sg Inst fear.M.Sg attach-Perf.M.Sg
‘Nadya was frightened by the elephant.’
```

(*lag* ‘attach’: thing attached and thing that it is attached at; *Dar* ‘fear’: thing that is feared)
A Noun+Verb Complex Predicate

"nAdiyah kO hATHI sE Dar lagA"

Figure: F-Structure for nAdiyah kO hATHI sE Dar lagA ‘Nadya was frightened by the elephant.’
A Permissive Complex Predicate

- $V + V$ complex predicate
A Permissive Complex Predicate

- V+V complex predicate
 - infinitival main verb
A Permissive Complex Predicate

- $V + V$ complex predicate
 - infinitival main verb
 - finite light verb
A Permissive Complex Predicate

- $V+V$ complex predicate
 - infinitival main verb
 - finite light verb
- both verbs contribute to overall argument structure of clause
A Permissive Complex Predicate

- V+V complex predicate
 - infinitival main verb
 - finite light verb
- both verbs contribute to overall argument structure of clause
 - 2 arguments from main verb
A Permissive Complex Predicate

- $V+V$ complex predicate
 - infinitival main verb
 - finite light verb
- both verbs contribute to overall argument structure of clause
 - 2 arguments from main verb
 - 2 arguments from light verb
A Permissive Complex Predicate

- V+V complex predicate
 - infinitival main verb
 - finite light verb

- both verbs contribute to overall argument structure of clause
 - 2 arguments from main verb
 - 2 arguments from light verb
 - combine into 3 arguments in resulting CP
A Permissive Complex Predicate

- **V+V complex predicate**
 - infinitival main verb
 - finite light verb
- both verbs contribute to overall argument structure of clause
 - 2 arguments from main verb
 - 2 arguments from light verb
 - combine into 3 arguments in resulting CP
- example: *dEkH dE* ‘let see’

nAdiyah nE yAsIn kO kitAb dEkH-nE d-I
Nadya.F.Sg Erg Yassin.M.Sg Dat book.F.Sg see-Inf.M.Sg give-Perf.F.Sg
‘Nadya let Yassin look at the book.’

(*dEkH* ‘see’: seer and seen item, *dE* ‘give’: permitter and action permitted)
Permissive Complex Predicate

"nAdiyah nE yAsIn kO kitAb dEkHnE dI"

Figure: F-Structure for nAdiyah nE yAsIn kO kitAb dEkHnE dI ‘Nadya let Yassin look at the book.’
Overview

1. Complex Predicates

2. Types of Complex Predicates

3. A Reference Dependency Bank for CPs

4. Conclusion
Design of the Reference Dependency Bank

- contains sentences illustrating examples of all common CP types in Hindi/Urdu
Design of the Reference Dependency Bank

- contains sentences illustrating examples of all common CP types in Hindi/Urdu
- strategy for creating the dependency bank:
Design of the Reference Dependency Bank

- contains sentences illustrating examples of all common CP types in Hindi/Urdu
- strategy for creating the dependency bank:
 - sentences were parsed using the Urdu ParGram grammar \rightarrow c- and f-structures
 - banked/disambiguated using LFG Parsebanker [Rosén et al. 2009]
 - converted into triples format (see PARC700, [King et al. 2003]) via XLE-internal process
 - triples conversion is flexible; features may be flattened or deleted
Design of the Reference Dependency Bank

- contains sentences illustrating examples of all common CP types in Hindi/Urdu
- strategy for creating the dependency bank:
 - sentences were parsed using the Urdu ParGram grammar → c- and f-structures
 - banked/disambiguated using LFG Parsebanker [Rosén et al. 2009]
 - converted into triples format (see PARC700, [King et al. 2003]) via XLE-internal process
 - triples conversion is flexible; features may be flattened or deleted
- triples format is theory-neutral; enables parsers to evaluate against the reference bank
CPs in the Reference Dependency Bank

to model the verbal complex of CPs:

- all parts of CP contributing arguments are concatenated by underscore
- makes clear that CP is main predicate of clause
CPs in the Reference Dependency Bank

- to model the verbal complex of CPs:
 - all parts of CP contributing arguments are concatenated by underscore
 - makes clear that CP is main predicate of clause

- triples representation split in two parts:
 - list arguments of the whole (complex) predication
 - indication of which part of the CP contributes which argument
 - consecutive labeling of CP parts based on their linear order
CPs in the Reference Dependency Bank

- to model the verbal complex of CPs:
 - all parts of CP contributing arguments are concatenated by underscore
 - makes clear that CP is main predicate of clause

- triples representation split in two parts:
 - list arguments of the whole (complex) predication
 - indication of which part of the CP contributes which argument
 - consecutive labeling of CP parts based on their linear order

- triples are restricted to predicate-argument relations

- neglect the more detailed information in f-structures
CPs in the Reference Dependency Bank

Nadya.F.Sg Erg Yassin.M.Sg Dat book.F.Sg see-Inf.M.Sg give-Perf.F.Sg
‘Nadya let Yassin look at the book.’
CPs in the Reference Dependency Bank

Nadya.F.Sg Erg Yassin.M.Sg Dat book.F.Sg see-Inf.M.Sg give-Perf.F.Sg
‘Nadya let Yassin look at the book.’
CPs in the Reference Dependency Bank

Nadya.F.Sg Erg Yassin.M.Sg Dat book.F.Sg see-Inf.M.Sg give-Perf.F.Sg
‘Nadya let Yassin look at the book.’

XLE f-structure

triples conversion

triples format
CPs in the Reference Dependency Bank

nAdiyah nE yAsIn kO kitAb dEkH-nE d-l
Nadya.F.Sg Erg Yassin.M.Sg Dat book.F.Sg see-Inf.M.Sg give-Perf.F.Sg
‘Nadya let Yassin look at the book.’

XLE f-structure

pred(root,dEkH_dE)
subj(dEkH_dE,nAdiyah)
obj-go(dEkH_dE,yAsIn)
obj(dEkH_dE,kitAb)
complex-pred-type(dEkH_dE,vv-perm)
cp-part1(dEkH_dE,dEkH)
cp-part2(dEkH_dE,dE)
arg1(dE,nAdiyah)
arg2(dE,dEkH)
arg1(dEkH,yAsIn)
arg2(dEkH,kitAb)
asp(dEkH_dE,perf).

triples conversion

triples format

application of rewrite rules
Overview

1. Complex Predicates
2. Types of Complex Predicates
3. A Reference Dependency Bank for CPs
4. Conclusion
Conclusion I

South Asian languages make heavy use of CPs
Conclusion I

- South Asian languages make heavy use of CPs
- essential to know about proper treatment
Conclusion I

- South Asian languages make heavy use of CPs
- essential to know about proper treatment
- essential to know about different CP types
Conclusion I

- South Asian languages make heavy use of CPs
- essential to know about proper treatment
- essential to know about different CP types
- also: essential to know what is not a CP
South Asian languages make heavy use of CPs

essential to know about proper treatment

essential to know about different CP types

also: essential to know what is not a CP

 - e.g. auxiliaries, modal constructions need to be distinguished from CPs
Conclusion I

- South Asian languages make heavy use of CPs
- essential to know about proper treatment
- essential to know about different CP types
- also: essential to know what is not a CP
 - e.g. auxiliaries, modal constructions need to be distinguished from CPs
 - examples of these constructions are also included in the dependency bank
Conclusion I

- South Asian languages make heavy use of CPs
- essential to know about proper treatment
- essential to know about different CP types
- also: essential to know what is not a CP
 - e.g. auxiliaries, modal constructions need to be distinguished from CPs
 - examples of these constructions are also included in the dependency bank
- other treebanks offer only limited annotation for CPs (e.g. HUTB, [Bhatt et al. 2009])
Conclusion II

- presented a reference dependency bank for CPs (and other constructions that are often confused with CPs)
Conclusion II

- presented a reference dependency bank for CPs (and other constructions that are often confused with CPs)
- reference bank is designed in a theory-independent way
Conclusion II

- presented a reference dependency bank for CPs (and other constructions that are often confused with CPs)
- reference bank is designed in a theory-independent way
- represents a typology of CPs (reflects what we currently know about CPs...)
Conclusion II

- presented a reference dependency bank for CPs (and other constructions that are often confused with CPs)
- reference bank is designed in a theory-independent way
- represents a typology of CPs (reflects what we currently know about CPs...)
- researchers may consult this resource when working on a new language
 - for theoretical syntax research
 - for constructing analyses for treebanks
 - for evaluating new parsers
Conclusion II

- presented a reference dependency bank for CPs (and other constructions that are often confused with CPs)
- reference bank is designed in a theory-independent way
- represents a typology of CPs (reflects what we currently know about CPs...)
- researchers may consult this resource when working on a new language
 - for theoretical syntax research
 - for constructing analyses for treebanks
 - for evaluating new parsers
- freely available on the internet
 - http://ling.uni-konstanz.de/pages/home/pargram_urdu/main/Resources.html
References

In Proceedings of the Third Linguistic Annotation Workshop, ACL-IJCNLP '09, 186–189, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Urdu and the Modular Architecture of ParGram.

The Structure of Complex Predicates in Urdu.
CSLI Publications.

Butt, M. 2010.
The Light Verb Jungle: Still Hacking Away.
In M. Amberber, B. Baker, and M. Harvey (Eds.), Complex Predicates in Cross-Linguistic Perspective. Cambridge University Press.

Urdu in a Parallel Grammar Development Environment.

The PARC700 Dependency Bank.
In Proceedings of the EACL03: 4th International Workshop on Linguistically Interpreted Corpora (LINC-03).

LFG Parsebanker: A Toolkit for Building and Searching a Treebank as a Parsed Corpus.
In F. V. Eynde, A. Frank, G. van Noord, and K. D. Smedt (Eds.), Proceedings of the 7th International Workshop on Treebanks and Linguistic Theories (TLT7), 127–133. LOT.