Adding an Annotation Layer to the Hindi/Urdu Treebank

Annette Hautli, Sebastian Sulger, Miriam Butt

TLT10, Heidelberg
January 6th, 2012
Aim of the talk

Hindi/Urdu Treebank
new treebank resource
Aim of the talk

- **Hindi/Urdu Treebank**
 - new treebank resource

- **Urdu ParGram grammar**
 - LFG grammar for Hindi/Urdu

augment with??
Aim of the talk

Hindi/Urdu Treebank
new treebank resource

augment with??

Urdu ParGram grammar
LFG grammar for Hindi/Urdu

Improved Hindi/Urdu Treebank
Can the HUTB benefit from the Urdu ParGram grammar? If so, how?
Outline of the talk:

Overview: Hindi/Urdu resources

The Hindi/Urdu Treebank

The Urdu ParGram grammar

An additional annotation layer for the HUTB

Conclusion
Outline of the talk

Overview: Hindi/Urdu resources

The Hindi/Urdu Treebank

The Urdu ParGram grammar

An additional annotation layer for the HUTB

Conclusion
Hindi/Urdu resources

- Hindi/Urdu: structurally very similar, differences in vocabulary, orthography
- different scripts: Arabic script for Urdu, Devanagari for Hindi
- often regarded as varieties of a single language (*Hindustani*)
- ∼240 million native speakers
- but: under-resourced language
- only a few lexical resources, no large corpora, no broad-coverage parsers
Outline of the talk

Overview: Hindi/Urdu resources

The Hindi/Urdu Treebank

The Urdu ParGram grammar

An additional annotation layer for the HUTB

Conclusion
The Hindi/Urdu treebank (HUTB)

- new treebank resource for Hindi/Urdu
- collaborative research effort of five universities (University of Colorado at Boulder, Columbia University, University of Massachusetts at Amherst, University of Washington, International Institute of Information Technology in India)
- project started in 2008 (work in progress)
- goal: building a multi-representational, multi-layered treebank
- described e.g. Palmer et al. (2007) and Bhatt et al. (2009)
- see other talks at this conference
HUTB: multi-layered, multi-representational

- three levels of annotation: two syntactic levels, one lexical-semantic level
HUTB: multi-layered, multi-representational

- three levels of annotation: two syntactic levels, one lexical-semantic level
- syntactic encoding 1: annotation of phrase structure
 - inspired by Chomskyan approach to syntax
 - binary trees, traces (movement)
HUTB: multi-layered, multi-representational

- three levels of annotation: two syntactic levels, one lexical-semantic level
- syntactic encoding 1: annotation of phrase structure
 - inspired by Chomskyan approach to syntax
 - binary trees, traces (movement)
- syntactic encoding 2: annotation of dependencies
 - Computational Pāṇinian Grammar (CPG) (Bharati et al. 1995)
 - system of kaṇaka relations (cf. thematic roles) to model head-argument relations (≈30 kaṇaka relations)
HUTB: multi-layered, multi-representational

- three levels of annotation: two syntactic levels, one lexical-semantic level
- syntactic encoding 1: annotation of phrase structure
 - inspired by Chomskyan approach to syntax
 - binary trees, traces (movement)
- syntactic encoding 2: annotation of dependencies
 - Computational Pāṇinian Grammar (CPG) (Bharati et al. 1995)
 - system of kaṟaka relations (cf. thematic roles) to model head-argument relations (~30 kaṟaka relations)
- lexical-semantic encoding: PropBank roles (Palmer et al. 2005)
 - semantic roles (Arg0, Arg1 etc.) assigned to verb arguments
 - PropBank roles are mapped onto kaṟaka roles
An example from the treebank

दूतावास ऐंध्कारियों ने उसे अच्छी से हत में पाया

dUtvAs adHikAryOn=nE usE accHl
embassy.Masc.Sg officer.Masc.Pl=Erg he.Acc good.Fem.Sg
sEhat=mEN pA-yA
health.Fem.Sg=Loc find-Perf.Masc.Sg

‘Embassy officers found him in a healthy condition.’
Syntactic annotation

(((NP
 XC हृतावास
 NN एड्कारियों
 PSP मे
))
((NP
 PRP उसे
))
((NP
 JJ अच्छी
 NN सेहत
 PSP मे
))
((VGF
 VM पाया
 SYM .
)))

<fs drel='k1:VGF' name='NP'>
<fs drel='k2:VGF' name='NP2'>
<fs drel='k7:VGF' name='NP3'>

Figure: Sample sentence from the Hindi/Urdu Treebank
Syntactic annotation

\[
((\text{NP} \quad <\text{fs} \ drel='k1:VGF' \ name='NP'>
\begin{align*}
\text{XC} & \text{ दृतावास} \\
\text{NN} & \text{ एध्यारियों} \\
\text{PSP} & \text{ ने}
\end{align*}
\))
\]

Figure: Closer look at NP \textit{dUtAvAs adHikAriyOn=nE}
Syntactic annotation

(((NP
 XC दृतावास
 NN एथ्कारियों
 PSP ने
))

Figure: Closer look at NP *dUtAvAs adHikAriyOn=nE*

- preterminal nodes assign part of speech to lexical items (XC, NN, etc.)
Syntactic annotation

\[
((\text{NP} <\textit{fs} \text{ drel='k1:VGF' name='NP'}> \\
 \text{XC द्रतावास} \\
 \text{NN एथ्कारियों} \\
 \text{PSP ने} \\
))
\]

Figure: Closer look at NP \textit{dU}t\textit{A}v\textit{A}s \textit{adH}i\textit{kA}ri\textit{yOn}=nE

- preterminal nodes assign part of speech to lexical items (XC, NN, etc.)
- nodes are grouped into constituents by bracketing
Syntactic annotation

((NP <fs drel='k1:VGF' name='NP'>
 XC द्वारा
 NN एक्सेसरीयों
 PSP ने
))

Figure: Closer look at NP dUtAvAs adHikAriyOn=nE

- preterminal nodes assign part of speech to lexical items (XC, NN, etc.)
- nodes are grouped into constituents by bracketing
- dependencies are attached to constituents (drel)
Lexical-semantic annotation

<table>
<thead>
<tr>
<th>पा ‘to find’</th>
<th></th>
<th>पा ‘to find’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg0</td>
<td>agent</td>
<td>हृतावास ऐंध्यारियों ‘embassy officers’</td>
</tr>
<tr>
<td>Arg1</td>
<td>patient (theme)</td>
<td>उसे ‘him’</td>
</tr>
<tr>
<td>ArgM-MNR</td>
<td>modifier (manner)</td>
<td>अच्छी सेहत ‘good health’</td>
</tr>
</tbody>
</table>

Table: PropBank frame for पा ‘to find’
Lexical-semantic annotation

<table>
<thead>
<tr>
<th>पा ‘to find’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg0</td>
</tr>
<tr>
<td>Arg1</td>
</tr>
<tr>
<td>ArgM-MNR</td>
</tr>
</tbody>
</table>

Table: PropBank frame for पा ‘to find’

- PropBank roles are mapped onto कर्का roles
Lexical-semantic annotation

<table>
<thead>
<tr>
<th>पा ‘to find’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg0</td>
</tr>
<tr>
<td>Arg1</td>
</tr>
<tr>
<td>ArgM-MNR</td>
</tr>
</tbody>
</table>

Table: PropBank frame for पा ‘to find’

- PropBank roles are mapped onto kaṇaka roles
- e.g., agent Arg0 mapped onto kaṇaka role k1 (dUtvAvAs adHikAriyOn=nE)
Outline of the talk

Overview: Hindi/Urdu resources

The Hindi/Urdu Treebank

The Urdu ParGram grammar

An additional annotation layer for the HUTB

Conclusion
Introducing the Urdu ParGram grammar

- research project at University of Konstanz
- part of an international research program called ParGram (Parallel Grammars)
 - aimed at developing broad-coverage grammars
 - couched within LFG framework (c-structure for constituents, f-structure for dependencies/grammatical relations)
 - uses XLE grammar development platform to *manually* construct grammars (Crouch et al. 2011)
 - described e.g. in Butt and King (2007), Bögel et al. (2009)
A grammar example

दूतावास ऐत्थ्वारियों ने उसे अच्छी सेहत में पाया

dUtAvAs adHikAriyOn=nE usE accHI
embassy.Masc.Sg officer.Masc.Pl=Erg he=Acc good.Fem.Sg
sEhat=mEN pA-yA
health.Fem.Sg=Loc find-Perf.Masc.Sg

‘Embassy officers found him in a healthy condition.’
Output (f-structure)

"dUtAvAs adHikAriyOn nE usE accHI sEhat mEN pAyA"

```
[ PRED 'pA< [2:dUtAvAs adHikAriyOn], [25:vuh]> ]
[ SUBJ NTYPE [NSYN common] ]
  2 CASE erg, GEND masc, NUM pl, PERS 3
[ PRED 'vuh' ]
  [ PRED 'sEhat' ]
  [ ADJUNCT { [ PRED 'accH' ]
      [ ADJUNCT { [ NTYPE [NSYN common] ]
          [ NTYPE [NSYN pronoun] ]
          25 CASE acc, NUM sg, PERS 3, PRON-TYPE pers
          TNS-ASP [ASPECT perf, MOOD indicative]
          68 CLAUSE-TYPE decl, PASSIVE -, VTYPE main
```
What information can the Urdu ParGram grammar add to the HUTB?

- LFG f-structures explicitly encode dependency information
- f-structures: not only head-argument dependencies, but rather highly articulated feature/value combinations that can serve as input to semantic computations
What information can the Urdu ParGram grammar add to the HUTB?

- LFG f-structures explicitly encode dependency information
- f-structures: not only head-argument dependencies, but rather highly articulated feature/value combinations that can serve as input to semantic computations
 - f-structures contain more detailed information than the HUTB annotation scheme
What information can the Urdu ParGram grammar add to the HUTB?

- LFG f-structures explicitly encode dependency information
- f-structures: not only head-argument dependencies, but rather highly articulated feature/value combinations that can serve as input to semantic computations
- f-structures contain more detailed information than the HUTB annotation scheme

ASPECT perf, TENSE pres, DEGREE positive, MODALITY can, ADDRESS rude, DEIXIS proximal, MOOD imperative, PROPER-TYPE location, ...
Outline of the talk

Overview: Hindi/Urdu resources

The Hindi/Urdu Treebank

The Urdu ParGram grammar

An additional annotation layer for the HUTB

Conclusion
An additional annotation layer for the HUTB

- proposition: add an additional annotation layer to the HUTB
- additional layer: XLE *triples*
An additional annotation layer for the HUTB

- proposition: add an additional annotation layer to the HUTB
- additional layer: XLE triples
 - information harvested from Urdu ParGram grammar parses
An additional annotation layer for the HUTB

- proposition: add an additional annotation layer to the HUTB
- additional layer: XLE *triples*
 - information harvested from Urdu ParGram grammar parses
 - feature-value information extracted from f-structures in the form of *triples*
An additional annotation layer for the HUTB

- proposition: add an additional annotation layer to the HUTB
- additional layer: XLE *triples*
 - information harvested from Urdu ParGram grammar parses
 - feature-value information extracted from f-structures in the form of *triples*
 - flexible, internal XLE process allows for the translation of f-structure features into triples format (features may be deleted or flattened)
An additional annotation layer for the HUTB

- proposition: add an additional annotation layer to the HUTB
- additional layer: XLE *triples*
 - information harvested from Urdu ParGram grammar parses
 - feature-value information extracted from f-structures in the form of *triples*
 - flexible, internal XLE process allows for the translation of f-structure features into triples format (features may be deleted or flattened)
 - has been done for parts of the Wall Street Journal section of PennTreebank (PARC700, King et al. (2003))
The XLE triples format

\[
\text{TNS-ASP [ASPECT perf, MOOD indicative]}
\]

\[
\text{68 [CLAUSE-TYPE decl, PASSIVE -, VTYPE main]}
\]
The XLE triples format

\[
\begin{align*}
\text{TNS-ASP} & \quad [\text{ASPECT perf, MOOD indicative}] \\
68 & \quad [\text{CLAUSE-TYPE decl, PASSIVE -}, \text{ VTYPE main}]
\end{align*}
\]

\[\downarrow\]

flattening of TNS-ASP feature, deletion of CLAUSE-TYPE feature
The XLE triples format

\[
\begin{array}{c}
\text{TNS-ASP} \quad [\text{ASPECT perf, MOOD indicative}] \\
\text{68} \quad [\text{CLAUSE-TYPE decl, PASSIVE -}, \text{VTYPE main}]
\end{array}
\]

\[
\downarrow
\]

flattening of TNS-ASP feature, deletion of CLAUSE-TYPE feature

\[
\downarrow
\]

resulting triples selection:

\[
\begin{align*}
\text{aspect}(pA, \text{perf}) \\
\text{mood}(pA, \text{indicative}) \\
\text{passive}(pA, -) \\
\text{vtype}(pA, \text{main})
\end{align*}
\]
Included Features: Overview

<table>
<thead>
<tr>
<th>Grammatical function labels</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>subj</td>
<td>subject</td>
<td>obj</td>
</tr>
<tr>
<td>obl</td>
<td>oblique</td>
<td>comp</td>
</tr>
<tr>
<td>xcomp</td>
<td>open complement</td>
<td>predlink</td>
</tr>
<tr>
<td>adjunct</td>
<td>adjunct phrase</td>
<td>conj</td>
</tr>
<tr>
<td>topic</td>
<td>topic phrase</td>
<td>focus</td>
</tr>
<tr>
<td>poss</td>
<td>possessive phrase</td>
<td>mod</td>
</tr>
<tr>
<td></td>
<td></td>
<td>object</td>
</tr>
<tr>
<td></td>
<td></td>
<td>compl. clause</td>
</tr>
<tr>
<td></td>
<td></td>
<td>copula constr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>conjunction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>focus phrase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>modifier clause</td>
</tr>
</tbody>
</table>

Table: GF labels for an additional dependency annotation
Included Features: Overview

<table>
<thead>
<tr>
<th>feature</th>
<th>value</th>
<th>feature</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>e.g. rude, familiar</td>
<td>adv-type</td>
<td>e.g. loc, sadv</td>
</tr>
<tr>
<td>adjunct-type</td>
<td>e.g. loc</td>
<td>aspect</td>
<td>e.g. prog</td>
</tr>
<tr>
<td>case</td>
<td>e.g. erg, acc, dat</td>
<td>causative</td>
<td>direct, indirect</td>
</tr>
<tr>
<td>adjunct-type</td>
<td>e.g. and, because</td>
<td>deixis</td>
<td>e.g. proximal</td>
</tr>
<tr>
<td>case</td>
<td>masc, fem</td>
<td>mood</td>
<td>e.g. imperative</td>
</tr>
<tr>
<td>coord-form</td>
<td>e.g. ezafe</td>
<td>num</td>
<td>sg, pl</td>
</tr>
<tr>
<td>gend</td>
<td>e.g. must, can</td>
<td>tense</td>
<td>e.g. past</td>
</tr>
<tr>
<td>mod-type</td>
<td>card, ord</td>
<td>passive</td>
<td>+</td>
</tr>
<tr>
<td>modality</td>
<td>e.g. pers, rel</td>
<td>proper-type</td>
<td>e.g. location, name</td>
</tr>
<tr>
<td>number-type</td>
<td>e.g. main, copular</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Other feature labels for an additional dependency annotation
Modality in Hindi/Urdu

- Hindi/Urdu features only two *dedicated* modals: *sak* ‘can’, *cAhlyE* ‘need’ (defective paradigm: only *cAhlyE*)
Modality in Hindi/Urdu

- Hindi/Urdu features only two dedicated modals: *sak* ‘can’, *cAhlyE* ‘need’ (defective paradigm: only *cAhlyE*)
- all other modality: expressed *constructionally* by combining main verb with one of the following: *pA* ‘find’, *paR* ‘fall’, *hO* ‘be’ (Bhatt et al. 2011)
Modality in Hindi/Urdu

- Hindi/Urdu features only two dedicated modals: sak ‘can’, cAhlyE ‘need’ (defective paradigm: only cAhlyE)
- all other modality: expressed *constructionally* by combining main verb with one of the following: pA ‘find’, paR ‘fall’, hO ‘be’ (Bhatt et al. 2011)
- example:
 yAsIn vuh kar sak-A
 Yassin.Masc.Sg that.Sg.Nom do can-Perf.Masc.Sg
 ‘Yassin could do that.’
Modality in the HUTB

- modal constructions annotated on PropBank annotation layer
- PropBank label ARG0–Mod marks modals
Modality in the HUTB

- modal constructions annotated on PropBank annotation layer
- PropBank label ARG\text{-}Mod marks modals
- but: modal meaning not further identified:

> Modal constructions in Hindi convey notions such as ability, desire, obligation, permission, etc. In Prop[on]bank, we will annotate the following cases using the ARG\text{-}Mod label.

(PB\textunderscore guidelinesNov2010.pdf, p. 29)
Modality in the Urdu ParGram grammar

- Hindi/Urdu modals recently implemented in the Urdu ParGram grammar
- f-structure features not only encode modality as present in some construction
- detailed attribute-value pairs account for the nature of the expressed modality
- modality subsumed under f-structure feature [MODALITY]
Modality in the additional layer for the HUTB

"yAsIn vuh kar sakA"

Figure: F-structure for *yAsIn vuh kar sakA* ‘Yassin could do that.’
Modality in the additional layer for the HUTB

```
pred(root,sak)
subj(sak,yAsIn)
xcomp(sak,kar)
subj(kar,yAsIn)
obj(kar,vuh)
modality(sak,can)
```

Figure: Proposed set of triples for modals
Modality in the additional layer for the HUTB

\[
pred(root, sak) \\
subj(sak, yAsIn) \\
xcomp(sak, kar) \\
subj(kar, yAsIn) \\
obj(kar, vuh) \\
modality(sak, can)
\]

Figure: Proposed set of triples for modals

\[\rightarrow \text{attribute-value pair } \text{[MODALITY can]} \text{ retained to form a part of the set of triples for this sentence}\]
Tense/aspect in Hindi/Urdu

- elaborate system of expressing different temporal and aspectual notions in Hindi/Urdu
 - e.g. progression, continuation, habituality, iteration, perfective, imperfective
- no differentiation between these concepts in the HUTB
- temporal auxiliaries get VAUX, main verbs get VM
Tense/aspect in Hindi/Urdu

- elaborate system of expressing different temporal and aspectual notions in Hindi/Urdu
 - e.g. progression, continuation, habituality, iteration, perfective, imperfective
- no differentiation between these concepts in the HUTB
- temporal auxiliaries get VAUX, main verbs get VM
- we propose: triples information on tense, aspect and mood
Tense/aspect in the HUTB

Lalu Yadav was working.

Lalu Yadav work.Masc.Sg do Prog.Masc.Sg be.Impf.Masc.Sg
‘Lalu Yadav was working.’
Tense/aspect in the HUTB

lAlu yAdav kAm kar rahA tHA
Lalu Yadav work.Masc.Sg do Prog.Masc.Sg be.Impf.Masc.Sg
‘Lalu Yadav was working.’

[...]
((VGF
 VM kar
 VAUX rahA
 VAUX tHA
))

Figure: HUTB tense/aspect annotation
Tense/aspect in the Urdu ParGram grammar

"lAlU yAdav kAm kar rahA tHA"

```
[PRED 'kar<[2:lAlU yAdav], [22:kAm]'>
    [PRED 'lAlU yAdav'
        [SUBJ NTYPE NSEM [PROPER [PROPER-TYPE name]]
            [NSYN proper
                2[CASE nom, GEND masc, NUM sg, PERS 3]
            ]
        ]
    ]

[PRED 'kAm'
    [OBJ NTYPE NSEM [COMMON count]
        [NSYN common
            22[CASE nom, GEND masc, NUM sg, PERS 3]
        ]
    ]

[TNS-ASP ASPECT prog, MOOD indicative, TENSE past]
54[CLAUSE-TYPE decl, PASSIVE -, VTYPE main]
```

Figure: F-structure for tense/aspect representation
Tense/aspect in the additional layer for the HUTB

subj(kar,lAlU yAdav)
obj(kar,kAm)
agentive(kar,+)
aspect(kar,prog)
tense(kar,past)
mood(kar,indicative)

Figure: Proposed set of triples for tense/aspect
Tense/aspect in the additional layer for the HUTB

subj(kar, lAlU yAdav)
obj(kar, kAm)
agentive(kar, +)
aspect(kar, prog)
tense(kar, past)
mood(kar, indicative)

Figure: Proposed set of triples for tense/aspect

- flattened TNS–ASP information from the f-structure
Tense/aspect in the additional layer for the HUTB

subj(kar, lAlU yAdav)
obj(kar, kAm)
agentive(kar, +)
aspect(kar, prog)
tense(kar, past)
mood(kar, indicative)

Figure: Proposed set of triples for tense/aspect

- flattened TNS–ASP information from the f-structure
- aspect, tense and mood triples kept in the dependency triples
Outline of the talk

Overview: Hindi/Urdu resources

The Hindi/Urdu Treebank

The Urdu ParGram grammar

An additional annotation layer for the HUTB

Conclusion
Concluding remarks I

- HUTB: resource for Hindi/Urdu aimed at multi-layered treebanking
Concluding remarks I

- HUTB: resource for Hindi/Urdu aimed at multi-layered treebanking
- HUTB can be extended using the Urdu ParGram grammar
Concluding remarks 1

- HUTB: resource for Hindi/Urdu aimed at multi-layered treebanking
- HUTB can be extended using the Urdu ParGram grammar
- Urdu ParGram grammar can provide linguistically informed analyses for several phenomena:
 - modality, tense/aspect/mood, adjunct type, proper noun type, multiword entities ...
Concluding remarks I

- HUTB: resource for Hindi/Urdu aimed at multi-layered treebanking
- HUTB can be extended using the Urdu ParGram grammar
- Urdu ParGram grammar can provide linguistically informed analyses for several phenomena:
 - modality, tense/aspect/mood, adjunct type, proper noun type, multiword entities ...
- f-structure triples provide detailed functional information not present in any of the HUTB layers
Concluding remarks I

- HUTB: resource for Hindi/Urdu aimed at multi-layered treebanking
- HUTB can be extended using the Urdu ParGram grammar
- Urdu ParGram grammar can provide linguistically informed analyses for several phenomena:
 - modality, tense/aspect/mood, adjunct type, proper noun type, multiword entities ...
- f-structure triples provide detailed functional information not present in any of the HUTB layers
- triples on a separate layer of HUTB enhance its usability and information content
Concluding remarks II

- short-term goals (current work):
 - randomly select HUTB sentences
 - automatically add triples annotation layer
 - manually check result
Concluding remarks II

- short-term goals (current work):
 - randomly select HUTB sentences
 - automatically add triples annotation layer
 - manually check result

- ultimate target: provide dependency annotation layer similar to PARC700
 - additional bonus: parsers for Hindi and parsers for Urdu may be evaluated against a single gold standard
 - HUTB provides gold standard for both languages
 - long-term goal: generally improve training of linguistically informed parsers for Hindi and Urdu
This research was funded by the Deutsche Forschungsgemeinschaft (DFG).

Thank you for your attention!
References

