Towards Identifying Hindi/Urdu Noun Templates in Support of a Large-Scale LFG Grammar

Sebastian Sulger* & Ashwini Vaidya+

*Universität Konstanz
+University of Colorado at Boulder/Universität Konstanz

5th WSSANLP Workshop
COLING 2014, Dublin, Ireland
The situation

- Spoken and written Hindi/Urdu: heavy, productive use of complex predicates (CPs) across domains
- Different types of CPs:
 - Aspectual V+V CPs: *gir par* ‘suddenly fall’ (lit. ‘fall fall’)
 - Permissive V+V CPs: *jane de* ‘let go’ (lit. ‘go give’)
 - N+V CPs: *yad kar* ‘remember’ (lit. ‘memory do’)
- In other languages:
 - *take a bath* (≈ ‘bathe’)
 - *give a stir* (≈ ‘stir’)
 - *in Betracht ziehen* ‘consider’ (lit. ‘in look-at pull’)
 - Most of these are restricted in use and/or much less productive than South Asian CPs.
The challenges

- General problem in deep and shallow parsing methods for Hindi/Urdu (and other South Asian languages): proper treatment of complex predicates
 - Automatic distinction of CPs from simplex verbs
 - Extraction of subcategorization frames
 - Semantic role labeling
 - Drawing semantic inferences

Research questions:

What existing resources may be employed to explore CP usage?
Can we confirm/reject existing theoretical hypotheses of N+V CPs?
How far can clustering algorithms take us?
How “good” / “coherent” are the resulting classes?
How can our LFG grammar benefit from the results?
Contents

1 Hindi/Urdu Noun-Verb Complex Predicates

2 Corpus study

3 Evaluation

4 Analysis

5 Grammar integration
The construction

- Combination of noun and light verb to form a single predicational unit
- Noun contributes main predicational content (including argument(s)), light verb dictates case marking and expresses subtle lexical semantic differences
- Highly productive constructions
- [Ahmed and Butt, 2011]: proposal for different classes of N+V CPs based on a small case study of 45 nouns and 3 light verbs (kar ‘do’, ho ‘be’, hu- ‘become’)

<table>
<thead>
<tr>
<th>N+V type</th>
<th>light verb</th>
<th>analysis</th>
<th>example N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS A</td>
<td>+</td>
<td>+</td>
<td>psych predications</td>
</tr>
<tr>
<td>CLASS B</td>
<td>+</td>
<td>−</td>
<td>only agentive</td>
</tr>
<tr>
<td>CLASS C</td>
<td>+</td>
<td>+</td>
<td>subject not an undergoer</td>
</tr>
</tbody>
</table>

Table: Classes of nouns identified by [Ahmed and Butt, 2011]
Goals of the investigation

- How do the proposals by [Ahmed and Butt, 2011] hold up towards a larger empirical basis (i.e., bigger corpora)?
- Extend the set of light verbs
- Apply different strategies of acquiring knowledge about CPs:
 - “Brute-force” statistical approach, based on bigram extraction, collocation analysis and clustering [Butt et al., 2012]
 - “Seed list” approach, using knowledge amassed from treebanks and clustering, and evaluate clusters (this paper)
- Come up with noun templates:
 - Nouns using one template will behave in a coherent way with respect to the light verbs they may occur with
 - Of great use for Hindi/Urdu grammar: extend noun lexicon/coverage
 - May inform further work on semantic classification of CPs
Contents

1. Hindi/Urdu Noun-Verb Complex Predicates
2. Corpus study
3. Evaluation
4. Analysis
5. Grammar integration
In a recent corpus study on Hindi\(^1\), we used the approach below:

1. Collect corpus of 21 million words harvested from BBC Hindi website, Hindi wikipedia, and the Hindi-Urdu Treebank (HUTB) [Bhatt et al., 2009]
 - POS tagged, lemmatized using a state-of-the-art Hindi tagger [Reddy and Sharoff, 2011]

2. Look at a set of seven light verbs: *kar* ‘do’, *ho* ‘be’, *de* ‘give’, *le* ‘take’, *rak\(^h\)* ‘put’, *lag* ‘be attached’, *a* ‘come’ (seven most frequently occurring light verbs)

\(^1\)The corresponding Urdu study is pending.
Methodology

3. Make use of the annotations in the HUTB [Bhatt et al., 2009]
 - Includes dependency annotation scheme
 - Employs label *pof* (for *part of*) to annotate complex predicates
 - Extract all items that are tagged as nouns and carry *pof* label
 → “Seed list” of nouns that we know take part in N-V CPs

4. Extract bigrams of pattern *seed list noun item + light verb lemma* from corpus
 - Assume that noun occurs right next to verb [Mohanan, 1994]
 - Cases where noun is removed from verb are rare (∼1% in HUTB)

5. Apply cutoff value c (noun occurrences across all light verbs)
 - Initial value $c = 50$: make statements about well-attested nouns
 - Also applied cutoff of $c = 3$ for comparison purposes
Compute relative frequencies of nouns combined with light verbs

\(c = 50: 522 \text{ nouns}; \ c = 3: 987 \text{ nouns} \)

<table>
<thead>
<tr>
<th>ID</th>
<th>noun</th>
<th>kār ‘do’</th>
<th>ho ‘be’</th>
<th>de ‘give’</th>
<th>le ‘take’</th>
<th>rākā ‘put’</th>
<th>lag ‘attach’</th>
<th>a ‘come’</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ṭanav ‘tension’</td>
<td>0.115</td>
<td>0.562</td>
<td>0.058</td>
<td>0.058</td>
<td>0.000</td>
<td>0.000</td>
<td>0.207</td>
</tr>
<tr>
<td>2</td>
<td>bʰag ‘part’</td>
<td>0.149</td>
<td>0.365</td>
<td>0.119</td>
<td>0.253</td>
<td>0.000</td>
<td>0.000</td>
<td>0.115</td>
</tr>
<tr>
<td>3</td>
<td>ag ‘fire’</td>
<td>0.110</td>
<td>0.251</td>
<td>0.087</td>
<td>0.000</td>
<td>0.055</td>
<td>0.443</td>
<td>0.055</td>
</tr>
<tr>
<td>4</td>
<td>māzuri ‘sanction’</td>
<td>0.000</td>
<td>0.000</td>
<td>0.757</td>
<td>0.243</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>dʰava ‘attack’</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>kripa ‘mercy’</td>
<td>0.409</td>
<td>0.486</td>
<td>0.000</td>
<td>0.000</td>
<td>0.105</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table: Relative frequencies of co-occurrence of nouns with light verbs
Methodology

Apply clustering algorithm to the data
- Clustering the nouns based on their occurrence patterns with light verbs
- k-means and GVM clustering\(^2\) applied

→ Problem: how to evaluate?
- We already know that our combinations (*seed list noun item + light verb lemma*) form legitimate CPs.
- What we don’t know is how *semantically coherent* the clusters are.
- We also don’t know which k and c values give us the best (i.e. most expressive/semantically most coherent) clusters.

Contents

1. Hindi/Urdu Noun-Verb Complex Predicates

2. Corpus study

3. Evaluation

4. Analysis

5. Grammar integration
Preliminary evaluation using WordNet

- Hindi WordNet publicly available [Bhattacharyya, 2010]
- Follow the technique described by e.g. [Van de Cruys, 2006] for each $k = 2, \ldots, 10$ and for $c = \{3; 50\}$
 1. Extract synonyms, hypernyms and hyponyms for every noun in a cluster
 2. Choose cluster centroid: noun with most semantic relations with every other noun in cluster
 3. Extract co-hyponyms, i.e. the hyponyms of the hypernyms (sisters in the ontology tree), for each centroid from WordNet (along with their synonyms, hypernyms and hyponyms)
 4. Calculate coherence for each cluster: count number of nouns that overlap with nouns in centroid’s relations & divide by number of words in cluster
 5. Maximize coherence across k and c
Preliminary evaluation using WordNet

<table>
<thead>
<tr>
<th>Size of k</th>
<th>$c = 3$</th>
<th>$c = 50$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GVM</td>
<td>k-means</td>
</tr>
<tr>
<td>5</td>
<td>0.049</td>
<td>0.060</td>
</tr>
<tr>
<td>6</td>
<td>0.066</td>
<td>0.055</td>
</tr>
<tr>
<td>7</td>
<td>0.089</td>
<td>0.056</td>
</tr>
<tr>
<td>8</td>
<td>0.084</td>
<td>0.089</td>
</tr>
<tr>
<td>9</td>
<td>0.082</td>
<td>0.081</td>
</tr>
</tbody>
</table>

Table: Semantic coherence values for $k = 5 − 9$

→ Most coherent clusters according to evaluation with $k = 5$, $c = 50$ using k-means algorithm
Contents

1. Hindi/Urdu Noun-Verb Complex Predicates
2. Corpus study
3. Evaluation
4. Analysis
5. Grammar integration
Cluster description:

- Cl. 1 (light green): kar ‘do’
- Cl. 2 (dark blue): ho ‘be’
- Cl. 3 (pink): de ‘give’
- Cl. 4 (dark green): alternating between rakʰ ‘keep’, lag ‘attach’, a ‘come’
- Cl. 5 (light blue): le ‘take’

Figure: Cluster visualization for $k = 5$, $c = 50$ (using tool by [Lamprecht et al., 2013])
Overview

Observations:

- Continuum between cl. 1/2: *kar/ho* alternation, psych predication [Ahmed and Butt, 2011]
- Continuum between cl. 1/3: *kar/de* alternation, “transfer”
- “Isolated” clusters 4/5: lexicalized *incorporated idioms* [Davison, 2005]

Figure: Cluster visualization for $k = 5$, $c = 50$ (using tool by [Lamprecht et al., 2013])
Productivity

<table>
<thead>
<tr>
<th>Light verb</th>
<th>Gloss</th>
<th>Relative frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>de</td>
<td>‘give’</td>
<td>0.75</td>
</tr>
<tr>
<td>kar</td>
<td>‘do’</td>
<td>0.08</td>
</tr>
<tr>
<td>le</td>
<td>‘take’</td>
<td>0.06</td>
</tr>
<tr>
<td>ho</td>
<td>‘be’</td>
<td>0.06</td>
</tr>
<tr>
<td>a</td>
<td>‘come’</td>
<td>0.02</td>
</tr>
<tr>
<td>rak⁴</td>
<td>‘keep’</td>
<td>0.02</td>
</tr>
<tr>
<td>lag</td>
<td>‘attach’</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table: LV properties of cluster 3, measured at centroid

- Frequencies: *likelihood* of nouns in group to co-occur with LVs
- Productive patterns *more likely* to be valid CPs, less productive patterns *more likely* to be non-CP combinations [Butt et al., 2012]
Contents

1. Hindi/Urdu Noun-Verb Complex Predicates
2. Corpus study
3. Evaluation
4. Analysis
5. Grammar integration
Grammar integration

Noun templates

<table>
<thead>
<tr>
<th>Light verb</th>
<th>Gloss</th>
<th>Relative frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>de</td>
<td>'give'</td>
<td>0.75</td>
</tr>
<tr>
<td>kar</td>
<td>'do'</td>
<td>0.08</td>
</tr>
<tr>
<td>le</td>
<td>'take'</td>
<td>0.06</td>
</tr>
<tr>
<td>ho</td>
<td>'be'</td>
<td>0.06</td>
</tr>
<tr>
<td>a</td>
<td>'come'</td>
<td>0.02</td>
</tr>
<tr>
<td>rak</td>
<td>'keep'</td>
<td>0.02</td>
</tr>
<tr>
<td>lag</td>
<td>'attach'</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table: LV properties of cluster 3, measured at centroid

- *Could* define grammar templates that model “absolute” choices:

 \[
 \text{NVGROUP3} = \{ \text{NV-CP-VERB} = \text{de} \ |
 \text{NV-CP-VERB} = \text{kar} \ |
 \sim \text{NV-CP-VERB} \}.
 \]

 iSArA NOUN @NVGROUP3.

signal (give/do)
Even better: noun templates with optimality choices

<table>
<thead>
<tr>
<th>Light verb</th>
<th>Relative frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>de</td>
<td>0.75</td>
</tr>
<tr>
<td>kar</td>
<td>0.08</td>
</tr>
<tr>
<td>le</td>
<td>0.06</td>
</tr>
<tr>
<td>ho</td>
<td>0.06</td>
</tr>
<tr>
<td>a</td>
<td>0.02</td>
</tr>
<tr>
<td>rakₕ</td>
<td>0.02</td>
</tr>
<tr>
<td>lag</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table: LV properties of cluster 3

Advantages:
- Do not make strict assertions about CP formation
- Rather, model statistical preferences over analyses
- Boost grammar coverage, robustness

Or: grammar templates that model preferences, via marks inspired by *Optimality Theory* (OT):

\[
\text{OPTIMALITYORDER } \text{cp-dispref } \text{non-cp-dispref} \\
+\text{cp-pref } +\text{non-cp-pref}.
\]

\[
\text{NVGROUP3} = \{ \text{NV-CP-VERB} = \text{dE} \\
\text{OT-MARK cp-pref} \\
\text{VERB} = \text{dE} \\
\sim \text{NV-CP-VERB} \\
\text{OT-MARK non-cp-dispref} \\
\ldots \\
\text{NV-CP-VERB} = \text{lag} \\
\text{OT-MARK cp-dispref} \\
\text{VERB} = \text{lag} \\
\sim \text{NV-CP-VERB} \\
\text{OT-MARK non-cp-pref} \\
\}.
\]

\text{iSArA NOUN @NVGROUP3. signal (give/do)}
Summary

- Some nouns heavily lexicalized towards a peculiar semantic configuration (i.e., compatible with a smaller subset of light verbs)
- Others may occur with a wider range of light verbs
- In dire need of further theoretical linguistic work to (possibly) link “noun templates” defined here with semantic classes

→ Use for grammar development?
 - Lexicon development
 - Can define templates, based on classification
 - Handle new coinages/borrowings, predict their usage

Future work:
 - Apply method to Urdu data
 - Refine/narrow down clusters (using more data/more features/more light verbs)
Thank you all for your attention!
References I

Discovering Semantic Classes for Urdu N-V Complex Predicates.

IndoWordNet.

Urdu and the Modular Architecture of ParGram.

Identifying Urdu Complex Predication via Bigram Extraction.

The Parallel Grammar Project.
Urdu in a Parallel Grammar Development Environment.

A Visual Analytics System for Cluster Exploration.

Argument Structure in Hindi.
CSLI Publications.

Cross Language POS Taggers (and other Tools) for Indian Languages: An Experiment with Kannada using Telugu Resources.

Grammar integration

Background — the Hindi/Urdu ParGram Grammar

- Computational LFG grammar in development in Konstanz
- Aim: large-scale LFG grammar for parsing Urdu/Hindi
- Overview publications are e.g. [Butt and King, 2007], [Bögel et al., 2009]
- Grammar is part of the ParGram project
 - Collaborative, world-wide research project
 - Development of parallel, linguistically well-motivated LFG grammars for a variety of languages
 - Features and analyses are kept parallel for easy transfer between languages
 - Languages involved: English, German, French, Indonesian, Japanese, Norwegian, Welsh, Georgian, Hungarian, Turkish, Chinese, Urdu/Hindi
- Overview publications are e.g. [Butt et al., 2002], [Sulger et al., 2013]
Background — the Hindi/Urdu ParGram Grammar

- Example parse:
 kīsan ṭrekṛtar=ko bec-ta he farmer.M.Sg tractor.M.Sg=Acc sell-Impf.M.Sg be.Pres.3.Sg
 ‘The farmer sells the tractor.’

- More information on the Hindi/Urdu ParGram Grammar:
 http://ling.uni-konstanz.de/pages/home/pargram_urdu/

- More information on ParGram: http://pargram.b.uib.no/
Class A: psych predications

- Occur with all three light verbs examined by [Ahmed and Butt, 2011]

(1) a. larki=ne kahani yad k-i
 girl.F.Sg=Erg story.F.Sg memory.F.Sg do-Perf.F.Sg
 ‘The girl remembered a/the story.’
 (lit. ‘The girl did memory of the story.’)

b. larki=ko kahani yad he
 girl.F.Sg=Dat story.F.Sg memory.F.Sg be.Pres.3.Sg
 ‘The girl remembers/knows a/the story.’
 (lit. ‘Memory of the story is at the girl.’)

c. larki=ko kahani yad hu-i
 girl.F.Sg=Dat story.F.Sg memory.F.Sg be.Perf-F.Sg
 ‘The girl came to remember a/the story.’
 (lit. ‘Memory of the story became to be at the girl.’)
Class B: agentive CPs

- Require an agentive (ergative-marked) subject and light verb *kar* 'do'

(2) a. bilal=ne makan tamir ki-ya
 Bilal.M.Sg=Erg house.M.Sg construction.F.Sg do-Perf.M.Sg
 ‘Bilal built a/the house.’
 (lit. ‘Bilal did construction of the house.’)

b. * bilal=ko makan tamir hē
 Bilal.M.Sg=Dat house.M.Sg construction.F.Sg be.Pres.3.Sg

c. * bilal=ko makan tamir hu-a
 Bilal.M.Sg=Dat house.M.Sg construction.F.Sg be.Perf-M.Sg
Class C: subject not an undergoer

- Exclude the light verb *hu-* ‘become’

(3) a. bilal=ne yih ārṭi taslim k-i
Bilal.M.Sg=Erg this condition.F.Sg acceptance.M.Sg do-Perf.F.Sg
‘Bilal accepted this condition.’
(lit. ‘Bilal did acceptance of this condition.’)

b. bilal=ko yih ārṭi taslim hē
Bilal.M.Sg=Dat this condition.F.Sg acceptance.M.Sg be.Pres.3.Sg
‘Bilal accepted this condition.’
(lit. ‘Acceptance of this condition was at Bilal.’)

c. * bilal=ko yih ārṭi taslim hē a
Bilal.M.Sg=Dat this condition.F.Sg acceptance.M.Sg be.Perf-M.Sg
And beyond ...

- [Ahmed and Butt, 2011] looked at a set of three light verbs
- Extending the set of light verbs brings up new questions
- Nouns that occur with *kar* ‘do’ and *de* ‘give’ (but exclude other light verbs)

(4) a. nadya=ne laɾki=ko paramarʃ ki-ya
 Nadya.F.Sg=Erg girl.F.Sg=Acc advice.M.Sg do-Perf.M.Sg
 ‘Nadya advised the girl.’
 (lit. ‘Nadya did advice to the girl.’)

b. nadya=ne laɾki=ko paramarʃ di-ya
 Nadya.F.Sg=Erg girl.F.Sg=Acc advice.M.Sg give-Perf.M.Sg
 ‘Nadya advised the girl.’
 (lit. ‘Nadya gave advice to the girl.’)
And beyond ...

Nouns that occur with *kar* ‘do’ only, not with *de* ‘give’

(5) a. bilal=ne makan tamir ki-ya
 Bilal.M.Sg=Erg house.M.Sg construction.F.Sg do-Perf.M.Sg
 ‘Bilal built a/the house.’
 (lit. ‘Bilal did construction of a/the house.’)
 [Ahmed and Butt, 2011, p. 3]

b. * bilal=ne makan tamir dir-ya
 Bilal.M.Sg=Erg house.M.Sg construction.F.Sg give-Perf.M.Sg
Nouns that occur with *le ‘take’ only, not with any other light verb

(6) a. nadya=ne laɾki=ko god lī-ya
 Nadya.F.Sg=Erg girl.F.Sg=Acc lap.F.Sg take-Perf.M.Sg
 ‘Nadya adopted the girl.’
 (lit. ‘Nadya took lap to the girl.’)

b. * nadya=ne laɾki=ko god kī-ya
 Nadya.F.Sg=Erg girl.F.Sg=Acc lap.F.Sg do-Perf.M.Sg

c. * nadya=ne laɾki=ko god dī-ya
 Nadya.F.Sg=Erg girl.F.Sg=Acc lap.F.Sg give-Perf.M.Sg