Mind the peak: When museum is temporarily understood as musical in Australian English

Katharina Zahner, Heather Kemler, and Bettina Braun

Abstract

Intonation languages signal pragmatic functions (e.g. information structure) by means of different pitch accent types. Acoustically, pitch accent types differ in the alignment of pitch peaks (and valleys) in regard to stressed syllables, which makes the position of pitch peaks an unreliable cue to lexical stress (even though pitch peaks and lexical stress often coincide in intonation languages). We here investigate the effect of pitch accent type on lexical activation in English. Results of a visual-world eye-tracking study show that Australian English listeners temporarily activate SSW-words (musical) if presented with WSW-words (museum) with early-peak accents (H+H*), compared to medial-peak accents (L+H*). Thus, in addition to signalling pragmatic functions, the alignment of tonal targets immediately affects lexical activation in English.

Index Terms: eye-tracking, lexical activation, lexical stress, pitch accent type, intonation, Australian English

1. Introduction

In West-Germanic languages such as English, German, or Dutch, intonation generally conveys post-lexical information, such as information structure, information status, speech act type, or attitudinal meanings. These pragmatic functions are encoded by means of different pitch accent types, i.e. tonal movements that make a certain word in an utterance particularly prominent (e.g. [1, 2]).

According to Autosegmental-Metrical phonology [1, 3], pitch accents are associated with metrical stressed syllables, which in turn are acoustically cued by a longer duration, higher intensity, more vocal effort, and more peripheral vowel quality, compared to unstressed syllables (see [4] for an overview on lexical stress; and references therein). Acoustically, pitch accent types differ in the alignment of pitch peaks (and valleys) in regard to stressed syllables. (Note that in this paper, pitch peaks and valleys will be referred to as H(high) and L(low)-tones, respectively, and accentuated syllables will be marked by a star (*), following the Tone and Break Indices (ToBI) framework for annotating intonation [5]).

One case in point showing such alignment differences is the marking of information status, i.e. whether a referent is new, given, or accessible in the discourse [1, 6]: Medial-peak accents (H* or L+H* accents) have been argued to signal new or contrastive information, respectively [7, 8]. Here, the pitch peak coincides with the stressed syllable. Early-peak accents (H+L*, H+IH*) are appropriate when a referent is inferable or accessible [7, 9]. For this pitch accent type, the pitch peak precedes the stressed syllable. In late-peak accents (L*+H, which are said to convey a "lack of speaker predication" [7, pp. 296]), the pitch peak follows the stressed syllable.

Essentially, stressed syllables might be high-pitched or low-pitched, depending on the pitch accent type that is selected in a given pragmatic situation. From the point of online speech perception, due to phrase-level intonation, pitch peaks are an unreliable cue to the position of lexical stress in intonation languages, as they are mainly indicative of something other than lexical stress.

Note that though peak pitches and lexical stress often coincide in these languages ([10-12]). In German appointment scheduling dialogues, for example, medial-peak accents occur on average in 42% of the cases, while early-peak or late-peak contours occur in only 14% and 23%, respectively ([10, p. 353]; Kiel Corpus of Spontaneous Speech). In American English spoken radio news corpora, medial-peak accents (H*/L+H*) strongly predominate (90%), while early-peak accents (H+IH*, 5%) and late-peak accents (L*+H, 1%) are rare [11, p. 118]. In Australian English Map task dialogues, (L)=H*-accents account for 55% of the pitch accents, while L*-accents occur in 29% of the cases [12, p. 185].

The focus of this paper is on the interplay between pitch accent type and lexical stress for online speech processing in Australian English (AusE). Recent studies on German suggest that (phrase-level) pitch accent type affects (word-level) stress perception and lexical access [13, 14], with pitch peaks driving these processes: In an offline stress identification task, [14] showed that German listeners made more errors for stress judgements when the pitch peak did not coincide with the stressed syllable, i.e. for early-peak or late-peak accents. In an online eye-tracking study, [13] further showed that German adults temporarily fixated S(long)W (weak)W (weak)-words (e.g. Libero, ‘sweeper’, underlining indicates the stressed syllable) when they heard segmentally overlapping WSW-words (e.g. Libelle, ‘dragonfly’) that were realised with an early-peak accent (H=L*, H+H*), i.e. where the pitch peak was realised on the initial unstressed syllable. In German, lexical activation is hence affected by pitch accent type, with non-intended competitors temporarily competing for lexical access.

Using the visual-world eye-tracking paradigm with four printed words on screen [15, 16], we here investigate whether Australian English listeners also perceive high-pitched or unstressed syllables as more lexical stress, consequently fixating SSW-cohort competitors with the wrong stress pattern (e.g. musical) more if WSW-targets (e.g. museum) are produced with an early-peak pitch accent (H+IH*), compared to a medial-peak pitch accent (L+H*).
2. Experiment

2.1. Methods

2.1.1. Participants

Forty Australian English participants (Ω=25.7 years, SD=7.5 years, 29 female, mostly students at the Western Sydney University) with unimpaired vision and hearing took part in the study. All of them received a small payment.

2.1.2. Materials

Sixty-four segmentally overlapping cohort pairs that differed in the position of lexical stress were selected. One of the members was stressed on the first, the other one on the second syllable. Thirty-two of the pairs were disyllabic (e.g. SW carton [ˈkaːtɒn] - WS cartoon [kaːˈtʊn]) and 32 were trisyllabic (e.g. SWW musical [ˈmjuːzɪkəl] - WSW museum [ˈmuːzɪkəm]). The 64 cohort pairs were segmentally identical until at least the onset consonant of the second syllable. Note that the first syllable in WS(W)-words always contained a full (non-reduced) vowel. The cohort pairs were matched for lexical frequency (COBUILD frequency per million in the CELEX database [17]: SW: 9.8, WS: 8.8, SWW: 4.6, WSW: 6.5) and number of characters across groups. For each cohort pair, we selected two semantically and phonologically unrelated distractors with comparable number of characters and syllables, and lexical frequencies to be presented on screen. Thirty-two of the 64 cohort pairs were used for cohort trials, half of which were experimental trials (WS(W) as auditory target), half were distractor trials (SW(W) as auditory target). The remaining 32 cohort pairs were used for filler trials, in which one of the unrelated items served as the auditory target.

All auditory targets were embedded in a semantically non-constraining carrier sentence ("The next word is ... "). A male native speaker of AusE (21 years, from Sydney) recorded the stimuli in a sound-attenuated cabin (44.1kHz, 16bit) at the University of Konstanz. The sentences for cohort trials (experimental and distractor trials) were produced in two intonation conditions each: with an early-peak (H+H*) and a medial-peak accent (L+H*) on the target and an accent on "next"; see Figure 1. The two productions of a target word were matched for syllable durations and F0-exursion of the accentual movement; see Table 1. For fillers, half of the sentences were recorded with an early-peak, half with a medial-peak accent on the target, matching the F0-range of their accentual movement with the F0-range of cohort pairs. Note that we deliberately used natural (non-resynthesised) productions to address the effect of naturally occurring pitch accent types on spoken word recognition. Auditory targets were cross-spliced into one production of the carrier ("The next words is "). Splicing was not noticeable, however.

2.1.3. Procedure

The procedure was identical to [13], except for the equipment. Participants were tested individually in an experimental booth at the MARCS Institute in Sydney, using the SR Eyelink 1000 in a tower mount system (sampling rate: 500Hz). They sat in front of an Asus LCD-LCD (21.5inch) monitor and their dominant eye was calibrated (pupil and corneal reflection).

In total, the experiment consisted of 64 trials, 32 cohort trials (16 experimental, 16 distractor trials) and 32 filler trials. In experimental trials, the (W)SW-cohort member was presented as audio (8 WSW, 8 WS); in distractor trials, the SW(W)-member (8 SWW, 8 SW), and in 32 filler trials one of the unrelated items. Distractor and filler trials served a strategic function, making participants click equally often on cohort members and filler items throughout the experiment.

Intonation condition was rotated across trials as follows: In experimental and distractor trials, intonation condition was distributed in a Latin-Square Design, i.e. each subject heard both intonation conditions (early- and medial-peak accents) across the whole experiment, but the same item in only one of the two intonation conditions. Half of the filler trials were presented with an early-peak accent, half with a medial-peak accent. Thus, each subject was presented with the same fillers.

![Figure 1: Example of an experimental trial for the early-peak condition (a) and the medial-peak condition (b).](image)

Table 1: Mean values (and standard deviations) of acoustic realisations of WS(W)-targets in the two intonation conditions in experimental trials.

<table>
<thead>
<tr>
<th>Acoustic variable</th>
<th>Early-peak condition</th>
<th>Medial-peak condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WSW</td>
<td>WS</td>
</tr>
<tr>
<td>F0-exursion of accentual movement in st</td>
<td>8.59</td>
<td>8.59</td>
</tr>
<tr>
<td>Duration of first syllable in ms</td>
<td>(0.60)</td>
<td>(0.79)</td>
</tr>
<tr>
<td>Duration of second syllable (stressed) in ms</td>
<td>138</td>
<td>154</td>
</tr>
<tr>
<td>Distractor trials</td>
<td>232</td>
<td>404</td>
</tr>
<tr>
<td>Filler trials</td>
<td>(42)</td>
<td>(57)</td>
</tr>
</tbody>
</table>

In the experimental lists, we pseudo-randomised the order of the trials such that each experimental half contained the same number of cohort, distractor and filler trials with the constraint of an experimental item being at most the third item of the same intonation condition in a row, among other criteria. Each list started with seven practice trials (five filler trials, followed by two distractor trials). Participants were randomly assigned to one of eight experimental lists.

Each trial started with a black cross on white background, centred on screen, which remained there until participants clicked on it. Upon clicking, the four words appeared on screen (Times New Roman, font size 20). The words were presented in the outer third of the four quadrants of the screen.
(to avoid peripheral looking) and were framed by a rectangular box (6.5cm x 4cm). The position of the items on screen was counterbalanced across conditions, such that the target to click on occurred equally often in the four possible positions for each intonation condition. The carrier phrase started 2000ms after the words occurred on screen, leaving a preview of 2635ms. Auditory stimuli were presented via headphones (Beyerdynamic DT-770 Pro, 80 OHM) at comfortable loudness. An automatic drift correction occurred after every fifth trial. After half of the trials (32 trials), there was an optional pause. In total, it took participants approximately 15 minutes to complete the experiment.

2.2. Results

Participants correctly clicked on the auditory target in 97.6% of all experimental trials (WS(W) word as auditory target). The average response time in these trials was 670.2ms after target offset. Results of a linear mixed effects regression model (lmer) [18] with intonation condition as fixed factor and subjects and items as crossed random factors [19] showed no effect of intonation condition (p=0.5). Error rates were also not affected by intonation condition (logistic regression model (glm) [20], p=0.4).

Fixation data were extracted in 4ms bins. Only fixations in experimental trials were analysed further. Fixations were automatically labelled as being directed to the target (WS(W), museum), the stress competitor (SW(W), musical) or to the unrelated distractors if they fell within a square of 200x200 pixels around the respective word. Figure 2 shows the evolution of fixations in experimental trials to the four words on screen in the two intonation conditions, i.e. when the WS(W)-target was presented with an early-peak (H+H*: 2a) or a medial-peak pitch accent (L+H*: 2b).

Fixation proportions to the distractors decreased around 260ms after the onset of the auditory target (museum) in both intonation conditions (at 895ms after the onset of the target sentence; Figure 2), while fixation proportions to the target (museum) and the stress competitor (musical) both further increased from the point of distractor divergence onwards. In the early-peak condition (Figure 2a), the competitor (musical) was ruled out as the potential word at around 565ms after target onset; in the medial-peak condition (Figure 2b), at around 485ms after target onset. Not only was the stress competitor discarded later in the early-peak condition than in the medial-peak condition, the competitor was fixated more than the target in this condition (from 290ms to 565ms relative to the target onset), while the competitor was never preferred over the target in the medial-peak condition. Figures 3 and 4 show the difference in fixations to the stress competitor and target across conditions in one graph, respectively.

To statistically corroborate the differences of competitor fixations (Figure 3) and target fixations (Figure 4), we modelled the logit of fixation to the competitor (relative to fixations elsewhere) and to the target using a glmer [20], Subjects and items were entered as crossed random factors, intonation condition and the control predictors number of syllables of the target word (3 for WSW vs. 2 for WS), log frequency difference (difference in log-lexical frequency between target and competitor extracted from CELEX) and character ratio (number of characters of target divided by number of characters by competitor) as fixed factors. The predictors log frequency difference and character ratio were centred, subtracting their mean from the respective value. Random slopes were successively added to the model if they improved the fit of the model (model comparisons were calculated using the anova() function in R, which is based on likelihood ratio tests). For all models, the best fit was a fully specified random effects structure.

Statistical analyses were run for two time windows, defined according to three reference points: target onset (635ms), average segmental uniqueness point (U.P.: 925ms) and the average target offset (1255ms). The U.P. is defined as point in the signal where acoustic segmental information distinguishes the cohort pair, irrespective of suprasegmentals (e.g. the offset of the phoneme /z/ in [ˈmjuːzɪkəl] vs. [ˈmjuːzɪkəl]). Window 1 (895-1185ms) represents the time from...
target onset to the segmental U.P., shifted by a processing time of 260ms; window 2 (1185-1515ms) represents the time from the U.P. to the end of the target, again shifted by 260ms.

For competitor fixations, there was a main effect of intonation condition in both time windows. During the processing of the segmentally ambiguous part (window 1), participants fixated the SW(W)-competitor (musical) more when the WS(W)-target (museum) was presented with an early-peak accent, compared to a medial-peak accent ($\beta=-0.54$, SE=0.24, $z=-2.29$, $p=0.02$). Furthermore, there was a significant main effect of character ratio ($\beta=0.87$, SE=0.43, $z=2.03$, $p=0.04$); the shorter the competitor relative to the target, the fewer fixations were directed to the competitor. The main effect of intonation condition was preserved after segmental disambiguation towards the end of the target (window 2, $\beta=-0.78$, SE=0.40, $z=-1.95$, $p=0.05$). No other effects were significant in this window.

Target fixations marginally differed as a function of intonation condition in window 1, with more fixations being directed to the target in the medial-peak condition, compared to the early-peak condition ($\beta=0.50$, SE =0.27, $z=1.88$, $p=0.06$); this effect became significant in a later part of window 1 (950-1185ms; $\beta=0.67$, SE=0.30, $z=2.25$, $p=0.02$). In window 1, there was also an effect of log frequency difference ($\beta=-0.53$, SE=0.17, $z=-3.18$, $p=0.001$), with fewer fixations to the target when it was relatively more frequent than the competitor. For window 2, there were no significant effects.

2.3. Discussion
Our fixation data show that AusE listeners activated the SW(W)-stress competitor more when the WS(W)-target was presented with a medial-peak accent (L+H*) than when presented with a medial-peak accent (L+H*). Hence, pitch peaks on unstressed syllables (as in early-peak accents) lead to a temporary activation of a competitor with initial stress. For AusE listeners, pitch peaks (even on unstressed syllables) seem to be an indicator for lexical stress and consequently pitch accent type influences lexical access.

This study explicitly addressed the influence of naturally produced pitch accent types on lexical activation. Note, however, that alignment differences of the pitch peak in regard to the stressed syllable often result in changes in other acoustic dimensions (e.g. duration, intensity, cf. [21]). In our case, the stimuli differed in vocal effort in the two conditions (measured as amplitude difference between the first harmonic and the third harmonic [H1-A3*] [22]) and other intensity measures. From a pure psychoacoustic view, future research needs to replicate the experiment using resynthesised stimuli.

3. General Discussion and Outlook
Taken together, we showed that pitch accent type affects lexical activation in Australian English (as was observed for German [13]). AusE listeners use f0-cues during lexical processing and perceive unstressed syllables with pitch peaks temporarily as stressed, which in turn leads to the activation of competitor words that are not intended by the speaker.

This finding is particularly interesting in regard to cross-linguistic differences in the use of suprasegmentals in intonation languages. English listeners have been shown to make little use of suprasegmental cues [23-25]: For instance, stress minimal pairs, such as farbear – farbear, primed each other’s associates. Hence, listeners treated these pairs as homophones, despite their suprasegmental (stress) difference [24]. The payoff for using suprasegmentals in English is smaller than in German or Dutch [26], as lexical stress is more frequently cued by vowel reduction (segmental information) in English than in German or Dutch [27]. Yet, our results corroborate the main findings in [28, 29], which showed that English listeners can use suprasegmentals, although they do so less efficiently than Dutch or German listeners: stress-mismatching primes (mu – mugum) do not inhibit lexical access, while doing so in Dutch or German [28]. [29] also show that when English listeners are encouraged to use suprasegmentals, i.e. when segmental cues are not informative, they primarily rely on pitch (the higher f0, the more likely a syllable was perceived as stressed). Thus, English listeners make less use of suprasegmentals due to a lower payoff in the English lexicon [26], but pitch peaks seem to be a strong cue for stress perception and lexical activation.

Yet, relying on pitch peaks during online processing is a strategy that is not profitable in all cases (neither for AusE nor for German listeners), as high tonal targets are indicative of more than just lexical stress. In fact, post-lexical meaning is conveyed by differences in pitch accent types, which in turn involve differences in the alignment of pitch peaks relative to stressed syllables. If listeners erroneously activate cohort competitors with the wrong stress pattern when words are realised with certain pitch accent types (here: early-peak accents), used to convey pragmatic functions, lexical access is slowed down, resulting in higher processing costs.

The question remains why pitch peaks are used for lexical access in online speech comprehension at all. First, f0-movements on syllables have been shown to lead to a percept of stress [30] and high-pitched syllables (alternating with low-pitched ones) are also used for rhythmical grouping [31]; acoustic salience might thus be interpreted as metrical prominence. Second, high-pitched stressed syllables are more frequent than low-pitched stressed syllables in AusE [12], despite AusE being an "uptalk" variety [32] (in which L*-accent proportions are assumedly higher than in non-uptalk varieties). At present, both mechanisms are equally likely; they might even both contribute to the effects observed in AusE. In future experiments, we plan to assess the role of input frequency by replicating the experiment in other varieties of English with less high-pitched stressed syllables than AusE, such as Indian English [33]. Alternatively, we plan to use an exposure phase to manipulate the frequency of high-pitched stressed syllables in the immediate input.

Another open question is whether the observed competitor activation caused by alignment differences is unidirectional (i.e. pitch peaks being interpreted as stressed) or whether it is also bidirectional (i.e. peak valleys being likewise interpreted as unstressed). It is unknown how low-pitched but metrically stressed syllables are processed. We will thus investigate whether accent types with low-pitched stressed syllables (e.g. L*-H) also lead to stress competitor activation – so that musical might temporarily be understood as museum.

4. Acknowledgements
This research was supported by a DAAD research grant (Australia – Germany Joint Research Cooperation Scheme) co-awarded to the last author and Prof. Anne Cutler. We thank Christopher Janssen for recording the stimuli. Finally, we owe special thanks to Prof. Anne Cutler for hosting us in her lab and for valuable comments and suggestions on the data.
5. References

