Linguistically Annotated Corpora: Quality Assurance, Reusability and Sustainability

51 Introduction

The creation and use of linguistically annotated corpora for a wide variety of languages has been one of the most prominent developments in computational linguistics over the last fifteen years. While earlier attempts were largely restricted to morpho-syntactic annotation (part-of-speech tagging, morphological analysis, and lemmatization), more recent developments have concentrated on deeper levels of annotation including phrase structure, dependency structure, predicate argument structure, lexical semantics, information structure, and discourse structure. As the complexity of annotation increases and the same data are often annotated with regard to different levels of analyses, questions of quality assurance, reusability and sustainability have become key issues in the creation and maintenance of linguistically annotated corpora. This article surveys the current best practices in each of these three domains, introduces the underlying
research issues, and provides pointers to future research directions in these areas.

We will mainly be concerned with textual corpora. Sound recordings of language and other primary data in non-textual modalities are normally transcribed in some way or the other before they are linguistically annotated. We, thus, take the textual representation of language as the starting point of our discussion. For issues of reusability and sustainability of multi-modal corpora, see especially article 33 in this volume.

The remainder of this article is structured as follows: Section 2 reviews the different levels of analyses that can be found in current linguistically annotated corpora and gives examples of reuse of data in the sense of multiple use of the same electronic text resource by different researchers or in different research contexts. ‘Reuse of text’ in the sense of plagiarism is discussed in article 60. Section 3 focuses on the relationship of data reuse and annotation quality as well as transparency of annotation. Section 4 considers corpora with distinct layers (or tiers) of annotation and focuses on issues of alignment and markup. Section 5 is concerned with metadata, documentation and standardization.
efforts. Section 6, finally, presents an integrated architecture for the sustainable representation of corpus data.

2 Corpus Resources and Reusability

The first linguistically annotated corpora that went beyond pure morpho-syntactic annotation were concerned with syntactic annotation in the form of phrase structure trees for English. One of the first efforts of this kind was the Gothenburg Corpus (Ellegård 1978), which was a hand-parsed section of the one million token Brown Corpus of American English (Francis/Kučera 1979). The Gothenburg Corpus comprised approximately 130,000 words and is a small resource by current standards. Its annotation was later reworked according to a very rich and detailed annotation scheme and then published as the SUSANNE Corpus (Sampson 1995) comprising also a small sample of speech from the London-Lund Corpus (Svartvik 1990). An early project involving automatic annotation and manual post-editing was the Lancaster Parsed Corpus (Garside/Leech/Váradi 1992, see also article 17). It is based on 140,000 words of the part-of-speech tagged Lancaster-Oslo/Bergen (LOB) Corpus of British English (Garside/Leech/Sampson 1987). Subsequently, the Penn Treebank
The project was launched at the University of Pennsylvania, which resulted in the creation of the Penn Treebank for American English. The first preliminary release of the treebank in 1992 presented a corpus of more than 2.8 million tokens of skeleton-parsed text including, among others, a one million token subcorpus of Dow Jones Newswire articles and the one million token Brown Corpus, which was parsed and completely retagged using the Penn Treebank tagset (Marcus/Santorini/Marcinkiewicz 1993). In the following releases, the Dow Jones primary data was slightly changed and has since been referred to as the Wall Street Journal Corpus. It is fair to say that the Penn Treebank has served as a model of best practice for the creation of treebanks for many other languages.

We refer interested readers to article 17 for more detailed information.

This short survey of the first English treebanks shows that the same primary data have found their way into different annotation projects. For example, part of the carefully sampled and balanced Brown Corpus was syntactically annotated in the Gothenburg Corpus as well as in the SUSANNE Corpus. The Brown Corpus as a whole was first part-of-speech tagged with the Brown tagset (Francis/Kučera 1982); later, it was retagged and parsed as part of the Penn Treebank. Another
major textual resource of the Penn Treebank, the one million token Wall Street Journal section, was originally taken from the TIPSTER Information-Retrieval Text Research Collection, which comprises, among other texts, a three-year Wall Street Journal collection.

The reuse of resources is not limited to the primary data. The Wall Street Journal section of the Penn Treebank is the most prominent example of how an already annotated resource is reused for further annotation. It has not only been used as a reference source for a wide variety of natural language processing applications but has also served as a basis for further linguistic annotation in the areas of semantics and discourse analysis. The annotation of the second release of the Penn Treebank (Penn Treebank II, Marcus et al. 1994), comprises information on phrase structure, basic predicate argument structure, and some semantic distinctions of adjuncts. Figure 1 exemplifies a sentence in the Penn Treebank II bracketing format, which is reminiscent of the programming language LISP. The locative adjunct is marked with the label PP-LOC and the subject with NP-SBJ.

{insert figure 1 here}
The PropBank project created Proposition Bank I (Palmer/Gildea/Kingsbury 2005), which is based on the Wall Street Journal section of the Penn Treebank II. PropBank annotates predicate-argument relations in the sense of assigning coarse-grained word senses to the predicates and prototypical semantic roles to the arguments. The annotation process made use of the treebank's phrase structural information: a rule-based argument tagger preprocessed the corpus, which was then manually post-edited. In some cases, the PropBank argument structure disagrees with the Penn Treebank syntactic structure (Palmer/Gildea/Kingsbury 2005: 81ff). In Figure 2, the subject is marked with the prototypical agent role ARG0, the direct object with the prototypical theme role ARG1, and the locative adjunct-like argument with ARGM-LOC.

\{insert figure 2 here\}

The NomBank project (Meyers et al. 2004) again aims at creating a supplementary annotation to the Wall Street Journal section of the Penn Treebank. In NomBank 1.0, nominal predicates are marked, and their arguments are annotated with
prototypical semantic roles in accordance with the PropBank annotation.

In the Penn Discourse TreeBank project (Miltsakaki et al. 2004), the Wall Street Journal Corpus is annotated according to a theory of low-level discourse structure. It treats discourse connectives, sometimes also referred to as discourse markers, such as because, when, but, or as a result as a kind of predicate between two arguments. In addition to the explicit use of such connectives in corpora, implicit relationships are also annotated by invoking the same connectives. Instead of building on the syntactic annotation of the Penn Treebank, the project decided to use the raw tokenized text for their annotation to avoid errors in the Penn Treebank, and allow for cases where discourse arguments do not align with syntactic structures (Dinesh et al. 2005). The CCGbank (Hockenmaier/Steedman 2005) is the result of an automatic conversion of the whole Penn Treebank into a corpus of Combinatory Categorial Grammar derivations. It pairs syntactic derivations with sets of word-to-word dependencies, which approximate the underlying predicate-argument structure. There are various other projects which added annotation levels to parts of the Wall Street Journal Corpus only. For example, the TimeBank Corpus
(Pustejovsky et al. 2003) comprises texts from various sources, among them articles from the Wall Street Journal Corpus, which are annotated with event classes, temporal information, and aspectual information according to the specifications of TimeML (Pustejovsky et al. 2004). The Rhetorical Structure Discourse Treebank (Carlson/Marcu/Okurowski 2003) contains, among other data, a selection of 385 Wall Street Journal articles from the Penn Treebank, which were annotated with discourse structure in the framework of Rhetorical Structure Theory (Mann/Thompson 1988). Clauses and larger sequences are hierarchically ordered by a set of discourse relations such as background, elaboration and contrast.

For the message understanding competition MUC 6 (1995), a subcorpus of 318 Wall Street Journal articles was published, annotated with anaphora and coreference information. The PARC 700 Dependency Bank (King et al. 2003) consists of 700 sentences, which were randomly extracted from one section of the Wall Street Journal Corpus, parsed with an LFG grammar, and given gold-standard annotations of grammatical dependency relations by manual correction and extension. The FrameNet project (Bake/Fillmore/Lowe 1998), which itself does not aim at creating an
annotated corpus resource but a lexical database, provides five texts of the Wall Street Journal Corpus annotated with FrameNet semantic roles and word senses for evaluation of the relation between its own semantic annotation and the one of PropBank.

There are various examples of multiply annotated data in languages other than English. One of the earliest is the 300,000 token Swedish Talbanken (Teleman 1974) which was manually annotated with morpho-syntactic and syntactic information (see also article 17, section 1). Recently, Talbanken was revived, its format updated and the annotations to some extent automatically re-encoded (see, e.g., Saxena/Borin 2002 and Nilsson/Hall/Nivre 2006). A major non-English resource is the Prague Dependency Treebank for Czech (Böhmová et al. 2000), which comprises annotation of morpho-syntactic information, surface-oriented dependency structure, and a non-isomorphic tectogrammatical structure including, among others, annotation of semantic roles in the framework of Functional Generative Description (Sgall et al. 1986), topic focus articulation, coreference, and information structure. The German TiGer Treebank (Brants et al. 2004) consists in its second release of 50,000 sentences which are annotated with
morpho-syntactic information, part-of-speech tags, phrase structure, and functional dependencies. The SALSA project (Burchardt et al. 2006) enriches the TiGer Treebank with FrameNet relations. The TiGer Dependency Bank (Forst et al. 2004) is a sample of 2,000 sentences from the treebank, which are automatically converted and subsequently extended and corrected in correspondence to the English PARC 700 Dependency Bank. The second major treebank of German, TüBa-D/Z (Hinrichs et al. 2004), consists of about 27,000 sentences in its third release and comprises information on morpho-syntax, phrase structure, topological structure, functional structure, named entities, as well as anaphora and coreference annotation. Another smaller resource is The Potsdam Commentary Corpus (Stede 2004). In addition to morpho-syntax, phrase structure and functional information, it is augmented with discourse relations in the framework of Rhetorical Structure Theory (Mann/Thompson 1988), information structure and anaphoric relations. These examples show that different aspects of linguistic description come into play in linguistically annotated corpora. In an ideal world, the different annotation levels could be interpreted as distinct analyses of the
same data. In the real world, however, they are often maintained as separate resources which are largely disparate. This leads to the question of how to integrate different levels of annotation into a comprehensive corpus resource. It would be desirable to use a combined representation of all levels of information, to be able to search a complex database and to specify restrictions on all levels of annotation. In the context of sustainability an integrated representation is desirable too, since it would allow the specification of general tools and format conversions which reduce the risk of losing one resource or the other due to obsolete formats or software. The representation of different levels of annotation, however, especially if they are created in different projects, places great demands on the data format.

3 Quality and Consistency of Annotation

Reuse of data is one of the motivations for creating annotated resources in the first place (Leech 1997). The very same corpus data can then be used and interpreted by different researchers potentially from different fields pursuing diverse research questions. Linguistic annotations of corpora can be regarded
as useful resources if they are well-formed and consistent. For the annotation a data format is defined and

used, for example, the brackets and the position of the labels in the Penn Bracketing Format. A corpus annotation is well-formed if it conforms to this defined format. General markup languages like XML define well-formedness constraints which can be checked by software tools. Therefore, XML-based linguistic annotation may be carried out by means of general or specialized XML tools (see Dipper/Götze/Stede 2004).

Moreover, XML provides means of validating annotations formally according to a document grammar that can, for example, be encoded as a Document Type Definition (DTD). If an XML document conforms to such a grammar, the document is said to be valid with regard to the document grammar. A document grammar might, for example,

require that nouns have to be included in noun phrases. Of course, validity constraints are only formal constructs and do not prevent the annotator from annotating incorrect structure due to wrong analyses. The linguistic adequacy can only be determined through human inspection. Inter-annotator agreement and methods of automatic consistency checking, however, may help to find potential problems.
Consistency in annotation is the most important factor in determining the quality of the annotated resource. Consistency here means that the same linguistic phenomena are annotated in the same way, and similar or related phenomena must receive annotations that represent their similarity or relatedness if possible. Consistency is important for all major applications of annotated corpora, regardless of whether they are used as training data in NLP applications, as gold standard in the evaluation of NLP applications, or as data for qualitative or quantitative linguistic studies. If one phenomenon receives different annotations in the corpus, then a machine learning algorithm cannot learn the regularities concerning the phenomenon, and the evaluation of NLP applications based on inconsistent data is misleading. Even if applications treated this phenomenon consistently, the evaluation would punish the system in cases where the system is consistent, and the annotation is inconsistent. In the case of corpus-based linguistic studies, the linguist is misled by the annotation, either finding only a part of the occurrences of a phenomenon in a quantitative study, or being forced to assume two different phenomena where only a single one exists.
Depending on the techniques used for the creation of the corpora, different strategies for providing consistency can be applied:

(i) Annotation guidelines

(ii) Semi-automatic annotation

(iii) Manual or automatic consistency checking

(iv) Multiple annotation by different annotators

These strategies can be applied independently or in combination, most of them are independent of the type of annotation. However, some of them necessitate the adaptation of the method to the annotation scheme.

Annotation guidelines are crucial for manual annotation. They describe the general principles in the design of the annotation scheme as well as given examples of different phenomena, and tests for difficult cases. They constitute a set of evolving laws of good annotation practice rather than a comprehensive grammar (the importance of annotation guidelines is also stressed in article 17, section 3.1). These guidelines provide a list of all symbols used in the annotation such as terminal and non-terminal symbols and their basic definitions. The annotation guidelines provide a resource for the user of the corpus: phenomena can only be searched for in corpora if users know how they
are annotated. For example, if linguists search for relative pronouns in the Penn Treebank, they need to know that relative pronouns are annotated as WDT. If they search for subordinating conjunctions, they should be aware that these received the same part-of-speech tag, IN, as prepositions in the Penn Treebank. Additionally, annotation guidelines help in training new annotators and as a reference for annotators when they are unclear on how to annotate certain phenomena. A detailed set of annotation guidelines can help preventing different annotators from making different decisions concerning the same phenomenon. Examples of annotation guidelines are the Penn Treebank part-of-speech tagging guidelines (Santorini 1990), the Penn Treebank II bracketing guidelines (Bies et al. 1995), the PropBank annotation guidelines (Babko-Malaya 2005), and the TimeBank 1.2 documentation (Pustejovsky et al. 2006). Dipper/Götze/Skopeteas (2007) exemplify a joint effort of a number of annotation projects to create common guidelines for phonology, morphology, syntax, semantics, and information structure as realised in the Potsdam Commentary Corpus. Another possibility of ensuring consistency is the use of software that assists the annotator in the annotation
process. *Semi-automatic annotation* is a process in which a program (1) suggests annotations, which then have to be approved or corrected by the annotator, and/or (2) visualises the annotation so that missing links in the annotation become evident. The first type of program generally uses a machine learning component that is trained on a previously annotated data set. This ensures that suggestions are made for phenomena that are consistent with previous annotations. Thus, to create new annotations, a conscious effort on the part of the annotator is required. Examples for such annotation programs are *annotate* (Plaehn 1998) and *TreeBanker* (Carter 1997). The second type of program presents the annotation in such a way that it helps users see gaps in the annotation. Such programs can be useful in the annotation of anaphoric or coreference chains (see article 28). If a link between two coreferent entities is missing, the intended single chain is interrupted, resulting in two different discourse entities. Tools that help with this type of annotation are, for example, *MMAX2* (Müller/Strube 2003), *PALinkA* (Orasan 2003), or *WordFreak* (cf. https://sourceforge.net/projects/wordfreak/).

*Automatic consistency checking* is a
very general label for annotation-specific strategies to discover inconsistencies. The strategies are dependent on the type of annotation as well as on the annotation scheme. They are based on the assumption that humans will always make mistakes, no matter how careful the annotators are. Thus, it is a good strategy to employ global search strategies, which can find questionable annotations (see also transverse correction in article 17). In treebank annotation, for example, one can check whether there are clauses in the treebank that have more than one subject. If such examples are found, they need to be checked manually because, in some cases, the double subject may result from coordination rather than from an annotation error. Since these searches are highly dependent on the type of annotation and the annotation scheme, it is difficult to envisage a general tool. Thus, the searches are either implemented as specialized programs or as queries in a tool that is capable of searching the annotated structures. Returning to the example with the two subjects in a clause, the tools TIGERSearch (König/Lezius 2000) or tgrep (also tgrep2 (Rohde 2001) or tregex (Levy/Andrew 2006)) query tree structures, so that they can find
clauses with two subjects. A more
general approach is to perform a
statistical analysis to detect rare
constructions, which then need to be
checked by humans. Such an approach is
based on the assumption that very rare
constructions are likely to be errors
(cf. e.g., Dickinson/Meurers 2005).

The most time-consuming strategy for
detecting inconsistencies in the
annotation is the multiple annotation of
the corpus by different annotators or by
the same annotator after a sufficient
period of time. This means that every
part of the corpus is annotated at least
twice. A comparison of these two
annotations reveals annotation errors or
problematic cases in which the
guidelines provide no guidance or are
not specific enough to cover the present
phenomena. Such multiple annotations
allow for the evaluation of *inter-
annotator agreement* (also referred to as
*inter-coder reliability*) or - if it is a
single annotator - as *intra-annotator
agreement*, i.e., the degree to which
the different annotators agree on a
single annotation for a specific
sentence or paragraph. If a high inter-
annotator agreement is reached, one can
conclude that the corpus has been
annotated consistently. Brants (2000),
for example, reports 92.43% agreement
between two annotators in assigning
syntactic annotation to the German NEGRA Corpus and, after a discussion and correction phase, an improved agreement of around 95%.

High inter-annotator agreement also suggests conclusion that the annotation scheme is well-balanced between providing enough specialized information and being too specific. If the annotation scheme is too specific, it becomes difficult for the annotators to distinguish the relevant cases, and the annotation becomes inconsistent. One example of such a situation is the annotation of a text with word senses. Most of these annotations are based on the inventory of WordNet (Fellbaum 1998) or related wordnets for other languages. If WordNet provides too few senses for a word, then certain distinctions are lost, and the annotator needs to decide which of the existing categories fits the word or whether to use a superordinate, less specific category. However, if WordNet provides a very fine-grained set of senses, then it is often difficult for the annotator to decide which is the correct sense for the word in question (see also Véronis 2001 and Palmer/Dang/Fellbaum forthcoming). Thus, finding a good granularity for an annotation is important for ensuring a consistent annotation of the corpus (see also
Bayerl et al. 2003b). Additionally, recent studies show that the granularity also influences the quality of NLP applications based on these corpora (cf. Kilgarriff/Rosenzweig 2000) for word sense disambiguation, as well as (Kübler 2005) and (Kübler/Hinrichs/Maier 2006) for parsing). Finally, we would like to point out that inter-annotator agreement is not an absolute measure of quality; there is always the possibility that two annotators just agree by chance. A widely used means for measuring inter-annotator agreement is the kappa statistic (Cohen 1960). It compares the observed proportion of agreement with the expected proportion of chance agreement and indicates whether an inter-annotator agreement is at a satisfactory level. As a rule of thumb, a kappa coefficient of less than or equal to 0.67 means that the inter-annotator agreement is too close to chance agreement and that one can therefore not draw any conclusions about it. If it is between 0.67 and 0.80 it allows tentative conclusions; only a value of 0.80 and above allows for definite conclusions about inter-annotator agreement (Krippendorff 1980). For discussions on the interpretation of the kappa coefficient see for example (Carletta 1996), (Di Eugenio/Glass 2004) and (Krenn/Evert/Zinsmeister 2004);
article 28 in this volume discusses an alternative measure. New developments concerning the evaluation of linguistically annotated data are presented among others at the biennial Linguistic Resources and Evaluation Conference (LREC) as well as in the Journal on Language Resources and Evaluation.

4 Representation of Annotation

This section deals with the question as to how different linguistic levels of annotation are to be technically realized and how they are related to a shared source of primary data. We distinguish conceptual levels from technical layers: a conceptual level need not correspond to a single technical layer and vice versa (cf. Bayerl et al. 2003a). Different levels, such as the word level (which is a fundamental but still not fully understood level, see the discussion in article 25), the part-of-speech level, and the phrasal level might, for example, be realized by means of one technical layer, as is the case in the Penn Treebank bracketing format (see figure 1).

The type of representation of the annotated corpus is a crucial prerequisite for ensuring its reusability. It is important to use a
data format for which there are tools to access and search the corpus. The issue is complicated by the fact that the international standardization committees are often not widely accepted, e.g., the base tagset for the transcription of speech of the Text Encoding Initiative (TEI). In most cases, the data format of a specific corpus is chosen to fit the primary application for which it is created. Thus, part-of-speech-tagged corpora, which are mainly used for training statistical part-of-speech taggers, are represented in pure text files, either in a column format, in which each word with its part-of-speech tag is placed on a separate line, or in running text, in which the part-of-speech tag is separated from the word by a special character. Once the annotation becomes more complex, or when there are multiple annotation levels, the issue of representation becomes more difficult.

In general, linguistic annotations can belong to one of two conceptually different annotation models: either a sequential model (sometimes also referred to as graph-based model) or a hierarchical model (cf. article 33 and article 36).

4.1 Hierarchies and Sequences

There are ongoing efforts for defining
a representational standard for corpora in which multiple types of annotation are present, for example, morphological, morpho-syntactic, syntactic, lexical-semantic, information structure, or discourse annotation. Bird/Liberman (2001) propose a graph-based representation, in which each type of annotation is treated as an independent layer of graph annotation. The graph approach is very flexible for the representation of text-based corpora as well as speech corpora, each necessitating a different interpretation of the fundamental nodes in the graph. If the underlying data type is text, the position in the sequence of characters serves as the reference point for distinct layers. In contrast, if the underlying data type consists of speech data, the time stamp of each token in the utterance will serve as the basis for the nodes. Additionally, annotation graphs are flexible enough to allow for crossing segment boundaries between layers as well as crossing edges inside a single layer. While this approach is very flexible for the representation of different types of corpora and annotations, it is difficult to imagine a general tool that would allow the user to access the whole range of annotations without having an overly complex and cryptic user interface.
In contrast to flexible annotation schemes designed specifically for multiple layers of annotation, there are annotation schemes that are developed to optimally encode a specific single level of annotation. One example of such an approach is the so-called *Pie-in-the-Sky* initiative (Meyers 2005) which aims at optimizing the representation of semantic information and which should serve as a basis for a general standard in corpus annotation. Hence, semantic information is the main level of organization and the other types of information need to conform to this primary annotation level. Because of the restrictions imposed by the underlying organization of annotations, it would be, e.g., impossible to cross a boundary that is imposed by the semantic annotation. While this restriction may be seen as a disadvantage for representing information other than on the semantic level, one needs to keep in mind that such a representation allows for a very simple and direct access to the semantic data. Thus, it is, for example, much easier to search for a specific type of predicate-argument structure than it would be in a graph-based representation. A similar representation is suggested by (Hinrichs/Kübler/Naumann 2005). Their representation, however, is based
primarily on syntactic information. Apart from this level of annotation, the authors include morphological and morpho-syntactic as well as anaphoric and coreferential annotations. Again, the decision that the syntactic constituents serve as the basis for the annotation of other levels restricts the annotation especially on the anaphoric and coreference level. However, it also ensures that the two levels are consistent with regard to each other. Thus, a markable, i.e., a potential referring expression, on the referential level will always correspond to a syntactic constituent. This is in contrast to other annotations which have been performed more independently. In PropBank, for example, some of the semantic roles intentionally conflict with the syntactic information in the underlying Penn Treebank (Palmer/Gildea/Kingsbury 2005: 81ff). Consequently, if the user needs to align the semantic information from PropBank with the syntactic information from the Penn Treebank, these mismatches must be resolved somehow.

4.2 Embedded and Standoff XML Markup
Besides conceptual decisions, especially the development or adoption of an appropriate tagset and the decision for a hierarchical or a graph-
based annotation approach, annotated corpora differ in the way they combine annotations and textual resources. Since the creation of large linguistically annotated corpora is an extremely time consuming endeavor, many of these corpora are based on technical decisions made in the 1980s. The resulting physical representation is therefore realized as a record-and-field or column-based format and frequently as a bracketing format, often influenced by the syntax of the programming language LISP. Nowadays linguistic (and other) annotations use the syntax of XML, at least as an interchange format. Often, existing linguistic corpora are converted into an XML-annotated resource as well (see, e.g., TiGer Treebank, Prague Dependency Treebank).

The main reason for the use of XML in linguistic annotation is obvious: XML is the lingua franca for text annotation in general (cf. article 33). Hence, XML is supported by most relevant software products, ranging from text editors, databases, web browsers to libraries for programming languages. Based on experience with the technical development in the last decades, XML was developed as a pure text format without any implicit formatting. This ensures that XML will be accessible in the future, even after it has ceased to play
an important role. An additional reason for the widespread use of XML is its flexibility. As a result of this flexibility, the XML annotation in corpora varies tremendously. The most striking difference concerns the connection of markup and annotations. It is possible to embed the markup used to annotate portions of text in the text itself or to refer to this text by means of links. The first technique is called embedded or inline annotation whereas marking by referencing is usually called standoff annotation (Thompson/McKelvie 1997). Both approaches have advantages and drawbacks. Standoff annotation is more flexible and allows for the distribution of different levels of annotation over several independent layers without duplicating the textual resource that is annotated by the different levels. The distribution of annotations of different linguistic levels (e.g., syntactic and discourse structure) over separate annotation layers not only leads to better conceptual modeling but also avoids problems which arise due to the fact that the XML standard forbids overlapping elements. But since XML was designed with the embedded annotation technique in mind, only a few XML software products allow for the processing of standoff annotated corpora.
in a way acceptable for non-XML experts. This, and the fact that single annotation layers cannot be interpreted or exchanged separately, since they are dependent on the layers they themselves point to, goes against the vision of sustainability of annotated text (see Hilbert/Schonefeld/Witt 2005). To reach more sustainable annotations, also standoff annotated documents should be stored and exchanged as XML documents with embedded XML annotations. Ideally each annotation level is encoded in a single XML file. Several of these XML documents can be merged into a single document if they share their textual primary data (see Witt et al. 2005). Alternatively, a parser which is described by Ide/Suderman (2006) can be used to yield a single XML inline representation. This parser integrates annotations distributed in separate XML standoff layers. Both approaches to merging can deal with overlapping hierarchies (cf. articles 33 and 36), which can be represented by means of milestones (DeRose 2004). Such tools enable users, for example, to merge relevant parts of the Penn Treebank with the annotations of PropBank, NomBank, Timebank, and the Penn Discourse Treebank.

5 Documentation
It should be clear from the previous sections that the creation of large linguistically annotated corpora is extremely laborious. Of course, this holds also for smaller corpora, but the efforts and the procedures necessary for the creation of corpora do not simply scale linearly with the corpus size.

Typically, the starting point for the creation of a smaller corpus is a single linguistic project that is concerned with a particular research question. To provide empirical evidence, language material is collected, and a corpus is created. This often results in small, special-purpose corpora that are barely reusable in projects concerned with slightly different research tasks. Even though this is a deplorable situation because the numerous small corpora would constitute a valuable resource for linguistics, it is almost impossible to change the situation. Typically individual researchers start collecting language material; afterwards they create a corpus, and later analyze or interpret their data. A single person or even a small group is likely to try to minimize the effort which is invested in the creation of a corpus. However, for the creation of large corpora it is imperative to devote considerable effort to building the prerequisites of corpus reuse and distribution. Ideally, such
issues are considered in the early stages of corpus building, otherwise there is a risk of wasting serious amounts of time and money on the creation of annotated data that end up as data graveyards (Schmidt et al. 2006) that are not accessible for the research community.

One of the most important tasks for facilitating reusability is a thorough documentation that goes beyond annotation guidelines described in section 3, which are exclusively directed at the human user. A comprehensive documentation that addresses all corpus-related tasks and that can also be explored by machines comprises different types of information:

- Linguistic tagsets: Linguistic concepts are marked with tags such as NN as part-of-speech tag for normal nouns or PP-LOC for locative prepositional phrases in the Penn Treebank tagset or ARG0 as semantic tag in the PropBank tagset.
- Content Models: XML based-annotation schemes often use document grammars for formally defining constraints on the use of tags as content of other tags. To update and to process corpora annotated according to formal document grammars (e.g., DTDs), an extensive documentation of the grammars is extremely important.
- Metadata: As described thoroughly in
article 13, the use of metadata, i.e., information describing corpora or sub-

1020corpora, is extremely important for the organization of corpora in general and, especially, for the retrieval of information contained in corpora. The most prominent metadata schemes defined for linguistic data are the ones defined by the Isle Metadata Initiative (IMDI) and by the Open Language Archive Community (OLAC).

Linguistic Data Categories/ Linguistic

1030Ontologies: To ease the interoperability of different linguistic resources some researchers promote the use of linguistic ontologies. Because annotated corpora contain arbitrarily defined tags to refer to linguistic concepts (e.g., number: dual, case: genitive), an ontology, i.e., a formal representation of the concepts, can be used to associate these tags with general linguistic concepts. The Data Category Registry (DCR, ISO 12620-1 (2003)) and the General Ontology for Linguistics (GOLD, Farrar/Langendoen 2003, see also article 13) were developed for this purpose.

Large corpora should be documented on all of these levels. This is not only a prerequisite for the reuse of the corpora. Since large corpora are created and evaluated by several people over a long period of time, extensive
documentation is necessary for the creation of a consistent linguistic resource of high quality (cf. also section 3).

6 An Architecture for the Sustainable Representation of Corpus Data

Many linguistic projects collect and annotate corpora, it has become more and more apparent that many of the laboriously acquired resources are not useable and sometimes not even accessible after the research project for which they were created has come to an end.

At the time of writing this article, the issue of sustainability of linguistic data is the subject matter of a joint research project undertaken by the Collaborative Research Centers in Tübingen (SFB 441), in Hamburg (SFB 538), and in Potsdam (SFB 632) (the joint project’s homepage: http://www.sfb441.uni-tuebingen.de/c2/index-engl.html). Each of these centers has independently developed their own annotated corpora. This joint project has the practical goal of transforming these heterogeneous corpus collections into a uniform data representation. At the same time, the project aims at developing methodologies and rules of best practice for new corpus-oriented projects in general (see
also Dipper et al. (2006). Within this project, an architecture for the sustainable representation of corpus data was developed and published in Wörner et al. (2006). A generalized, i.e., less project-specific, version of this architecture is given in figure 3.

{figure 3 here}

The architecture can be subdivided into an input-oriented and an output-oriented part. When dealing with existing corpora, the input-oriented component is necessary for unifying heterogeneous corpus formats. This merging process may result in a document that contains all the information of the source document but its representation belongs to another model, for example, data originally represented in a graph-based model is now represented according to a hierarchical model. In this case, the transformation is an information-preserving (lossless) procedure. In other cases, however, the generalized corpus model does not allow for the inclusion of all the information of the source. In such cases, the merging can be regarded as a generalization to a least common denominator. Whether a generalization or unification is used depends heavily on the diversity of the input formats. If they belong to
different paradigms, especially if the merging process needs to combine a graph-based format and a hierarchy-oriented format (see section 4), a non-lossless transformation is more likely to be defined and implemented. As a consequence, the result of such a combination is not re-convertible to the input format. To circumvent this drawback, the generalized format needs to allow for the inclusion of information whose sole purpose is to enable back-transformations into the original format.

A corpus represented in a format that conforms to the generic corpus model must contain all the metadata of the original corpus, but potentially represented in another metadata scheme (see article 13).

The output-oriented part of the proposed architecture for the sustainable representation of linguistic data follows the idea that the best way to improve accessibility is to provide the same data in as many different representations as possible. Therefore the data can be partially or completely converted into several linguistic and non-linguistic formats (e.g., TEI, LAF (Ide/Romary/de la Clergerie 2003), or XHTML).

For a general discussion of sustainability we refer the reader to
the seminal paper by Bird/Simons (2003) in which they address the problem of portability and sustainability of digitized language data in general with a special emphasis on recorded spoken language. They suggest rules of best practice for the creation, storage and distribution of linguistic resources, which they specify along the following seven dimensions: content, format, discovery, access, citation, preservation, and rights. For example, they recommend the use of Unicode for character encoding and XML for annotation. They strongly recommend using open, non-proprietary standards for storing language data and descriptions. They suggest that creators of corpora document the process for access as part of the metadata, including any licenses and charges. Finally, Bird and Simons recommend making an additional paper print-out of the data, for this is still the most sustainable way of preserving information. An updated version of the rules of best practice is available on the OLAC pages (http://www.language-archives.org). For an exhaustive discussion on aspects of language documentation interested readers may also consult (Gippert/Himmelmann/Mosel 2006).
7. Conclusion

In this article, we discussed linguistically annotated corpora and described an approach for the sustainable representation of such data. The availability of large collections of electronic texts and the need for corpora augmented with linguistic information especially for natural language engineering purposes has led to the creation of larger and larger linguistically annotated corpora. In addition to these large corpora, an immense amount of rather small special-purpose corpora have been annotated as well. Naturally, the creation of all these corpora is a laborious process but the effort involved in the creation of large corpora is not only greater than for the creation of smaller resources, it also requires different strategies: different annotators are involved, heterogeneous software might be used, potentially more levels of information are annotated, the creation of large corpora is more time-consuming (in some cases taking even decades), and so on.

For these reasons, every effort should be made that such resources are accessible and reusable after their creation. Therefore, the linguistic community should not any longer tolerate corpus-oriented projects ignoring aspects of sustainability and agreement.
on rules of best practice in corpus creation.

Acknowledgements
We would like to thank Stefanie Dipper, Piklu Gupta, and Georg Rehm for their useful comments on earlier versions of this article.

Literature
Bies, A., Ferguson, M., Katz, K. and


Language and Discourse at the 15th Nordic Conference of Computational Linguistics (NODALIDA-05). Joensuu, Finland.


Merging and Layering Linguistic Information. Genoa, Italy.


Garside, R., Leech, G. and Váradi, T.
Lancaster Parsed Corpus. A machine-readable syntactically analyzed corpus of 144,000 words, available for distribution through ICAME. Bergen: The Norwegian Computing Centre for the Humanities.


Rhetorical Structure Theory: Toward a 
functional theory of text organization. 

Marcus, M., Santorini, B. and 
Large Annotated Corpus of English: The 
Penn Treebank. Computational 
Linguistics 19:2, 313-330.

Marcus, M., Kim, G., Marcinkiewicz, 
M.A., MacIntyre, R., Bies, A., Ferguson, 
The Penn Treebank: Annotating predicate 
argument structure. In ARPA Human 
Language Technology Workshop. Plainsbor, 
NJ.

Description.

http://nlp.cs.nyu.edu/meyers/pie-in-the-

Meyers, A., Reeves, R., Macleod, C., 
Szekely, R., Zielinska, V., Young, B. 
Argument Structure for NomBank. In 
Proceedings of the 4th International 
Conference on Language Resources and 
Evaluation. Lisbon, Portugal.

Miltsakaki, E., Prasad, R., Joshi, A. 
Treebank. In Proceedings of the 4th 
International Conference on Language 
Resources and Evaluation. Lisbon, 
Portugal.

Message Understanding Conference.


1555 Pustejovsky, J., Hanks, P., Saurí, R.,
See, A., Gaizauskas, R., Setzer, A.,
Radev, D., Sundheim, B., Day, D., Ferro,
Corpus. In Proceedings of Corpus
Linguistics 2003, Lancaster, UK.

Pustejovsky, J., Ingria, B., Saurí,
R., Castano, J., Littman, J.,
Gaizauskas, R., Setzer, A., Katz, G. and

Language TimeML. In Mani, I.,
Pustejovsky, J. and Gaizauskas, R. (eds)
The Language of Time: A Reader. Oxford
University Press, Oxford.

Pustejovsky, J., Littman, J., Saurí,
Documentation. Brandeis University,
http://www.timeml.org/site/timebank/docu-
mentation-1.2.html.


Sampson, G. (1995) English for the
Computer: the SUSANNE corpus and

analytic scheme. Clarendon Press,
Oxford.

Santorini, B. (1990) Part-Of-Speech
Tagging Guidelines for the Penn Treebank
Project, Department of Computer and

Information Science, University of
Pennsylvania, 3rd Revision, 2nd
Printing,
ftp.cis.upenn.edu/pub/treelbank/doc/taggu-
ide.ps.gz.


Authors:

Heike Zinsmeister, Tübingen (Germany)
Erhard Hinrichs, Tübingen (Germany)
Sandra Kübler, Bloomington/IN (U.S.A.)
Andreas Witt, Tübingen (Germany)

With the exception of the first author, the order is alphabetical.
In such an environment, a market maker can absorb huge losses.

Figure 2: PropBank; prototypical semantic roles of verbal arguments
Figure 3: An architecture for sustainable data representation