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1 Introduction

The first thing I ever said to Lauri Karttunen was: “Nice to
meet you. I fell in love with your FSM book”. He blushed. And
smiled.

This paper examines the role that Finite State Transducers (FST) play
in the Urdu ParGram grammar.1 Like most of the ParGram grammars, the
Urdu grammar uses FSTs for tokenization and for morphological anal-
ysis. In addition to these basic components, the Urdu grammar is special
among the ParGram grammars in that it also integrates a transliteration
FST. This transliteration component allows the Urdu grammar to function
as the core engine for the parsing and generation of both Urdu and Hindi.
Urdu and Hindi are structurally similar enough that they are often treated
as versions of one language. However, Urdu is written in a version of the
Arabic script and Hindi is written in Devanagari. The transliteration com-
ponent takes input from both scripts and converts it into an underlying
Latin transliteration that can be used for both languages.

Urdu/Hindi has relatively complex morphology. Our implementation of
the Urdu/Hindi morphological component uses all the capabilities of finite-
state morphology (FSM) introduced by Beesley and Karttunen (2003), in-
cluding phonological rules and reduplication. These interact in a com-
plex manner with the FST transliteration component. We also use the mor-
phological component for the dynamic formation of morphological com-
plex predicates, i.e., to model the Urdu/Hindi morphological causative.
Complex predication in the Urdu grammar (Butt et al., 2003, 2009) is im-
plemented in the syntax via the restriction operator (Kaplan and Wedekind,
1993) and phrase structure rules and in the morphological component via
sublexical rules. The implementation uses standard capabilities provided
by FSM and its interface to the syntax in the grammar development plat-
form XLE (Crouch et al., 2016, Kaplan et al., 2004). However, it raises
questions with respect to the interaction of lexical rules with the restriction

1We would like to thank Tafseer Ahmed, Ghulam Raza, and an anonymous reviewer
for their help. Parts of this research was funded by the Urdu ParGram project funded by
the Deutsche Forschungsgemeinschaft. Research for this paper by the third author was
done prior to her joining Amazon.
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operator. In particular, it raises issues of how morphology and syntax in-
terface with respect to argument structure operations such as passivization
and causativization.

We address these topics as part of the paper. The system architecture is
presented in section 2, the core tokenization in section 3, the script translit-
erator in section 4 and the morphological component in section 5. Section
6 describes how these are specified in the XLE implementation. The inter-
action between morphology and syntax with respect to complex predicate
formation is the topic of section 7. Section 8 concludes that an integration
of FSTs into a computational grammar taps into a powerful yet intuitive
and user-friendly technology that is compatible with theoretical proposals
concerning the role of morphology in a modular architecture of grammar
(Karttunen, 2003, Dalrymple, 2015). It is thus a technology that no com-
putational grammar should have to do without.

The major conclusion of our paper is that we, as a field, are indebted to
Lauri Karttunen for playing a crucial role in developing this theory-driven
technology. Without his combination of theoretical and implementational
genius, this technology would not have been taken as far and would not
have become as available to the community in its intuitive and accessible
manner.2

2 System Architecture

The Urdu grammar (Butt and King, 2002) is part of the Parallel Grammar
(ParGram) project (Butt et al., 1999, 2002). The ParGram project origi-
nally focused on three closely related European languages: English, French,
and German. Once grammars for these languages were established, more
languages were added, including Urdu. Grammars have been developed for
Arabic, Georgian, Hungarian, Indonesian, Irish, Japanese, Malagasy, Norwe-
gian, Polish, Tigrinya, Turkish, Welsh andWolof. The ParGram project uses
the XLE parser and grammar development platform (Maxwell III and Ka-
plan, 1993, Crouch et al., 2016). The grammars use the Lexical-Functional
Grammar (LFG) formalism which produces c(onstituent)-structures (trees)
and f(unctional)-structures (attribute-value matrices or AVMs) as syntac-
tic analyses. A parallel treebank across several of the ParGram languages
has been developed (Sulger et al., 2013) and is accessible via the INESS
treebanking technology (Rosén et al., 2009, 2012b,a).

LFG assumes a version of Chomsky’s Universal Grammar hypothesis
that all languages are governed by similar underlying structures. Within
LFG, f-structures encode a language universal level of analysis, reflecting

2We are personally immeasurably indebted to Lauri Karttunen for his long-term in-
volvement in the ParGram project, his avid interest in different applications for FSTs,
and his boundless encouragement for our work.

2



cross-linguistic parallelism. The ParGram project aims to test the LFG
formalism for its universality and coverage limitations, determining how
far parallelism can be maintained across languages. Where possible, the
analyses produced for similar constructions in each language are parallel.
The standardization of the analyses has the computational advantage that
the grammars can be used in similar applications and this standardization
can simplify cross-language applications (Frank, 1999).

Most of the ParGram grammars use finite-state tokenizers and morpholo-
gies (Beesley and Karttunen, 2003). None of them uses a full-form lexicon.
Having access to a morphological analyzer is crucial for large-scale, robust
coverage for morphologically complex languages.

In this paper, we focus on the roles FSTs play in the Urdu ParGram
grammar. There are three types of FSTs in the Urdu grammar: an Urdu↔Latin
transliterator, a tokenizer, and a morphology. Within the ParGram context,
the transliteration step is unique: it was introduced to allow the grammar
to parse both Urdu, written in Arabic script, and Hindi, written in Devana-
gari,3 using Latin alphabet forms as a lingua franca.

Tokenizer + Transliterator (FST)
↓

Morphology (FST)
↓

LFG ParGram Grammar

Figure 1: Configuation of the FSTs in the Urdu Grammar (Parsing)

The following sections discuss the components in Figure 1 from the per-
spective of parsing. LFG grammars are reversible and hence are also used for
generation. That is, an f-structure can be given as input to a grammar and
the appropriate strings generated. We focus mainly on parsing within this
papers. See Maxwell III (2006), Kaplan and Wedekind (2000), Wedekind
and Kaplan (2012), Zarrieß et al. (2011) and Crouch et al. (2016) on LFG
and generation.

3 Tokenizer

The first step in the natural language processing (NLP) of text is that of
tokenization, i.e., of breaking a text into words or tokens. Languages differ
in the punctuation systems they use as well as in the conventions used to
indicate word boundaries. Therefore, many of the ParGram grammars have
developed specialized tokenizers. The Urdu grammar integrates a cascade of

3We do not discuss Devanagari here, focusing on the Urdu transliteration which is a
significantly more complex task.
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FSTs, including a transliterator, a morphological analyzer and a component
for the identification of multi-word expressions (MWE). The special needs
of Urdu are taken care of by the combination of these components and the
default XLE tokenizer that is included as part of the XLE grammar devel-
opment platform (Crouch et al., 2016). This default tokenizer is based on
the tokenizer described in chapter 9 of the FSM book (Beesley and Kart-
tunen, 2003) and has been elegantly augmented by Ron Kaplan (Kaplan,
2005, Forst and Kaplan, 2006).

As a standard FST, the tokenizer is bidirectional. In the Urdu grammar,
the tokenizer is used for parsing and generation. In order to parse and
generate Urdu script, it is combined with the transliterator described in the
next section.

4 Transliterator

One of the characteristics of the Urdu ParGram grammar is its aim to cover
both Urdu and Hindi. The architectural design involves a core grammar
written in Latin script flanked by two FSTs, one for Urdu script and one
for Devanagari, which makes it possible to switch from one language to the
other while using a single underlying grammar. This section describes the
Urdu FS transliterator4 and how it deals with Urdu-specific orthographic
issues by integrating restrictional components to minimize the generation of
words not found in Urdu. The transliterator is based on a non-probabilistic
FST compiled with the lexc language (Lexicon Compiler), which is designed
to build finite state networks and analyzers implemented with the Xerox
finite state technology (xfst) (Beesley and Karttunen, 2003). The resulting
network is compatible with one written with, e.g., regular expressions, but
is human readable. The underlying transliteration scheme was developed by
Malik et al. (2010), following Glassman (1986).

4.1 Urdu script issues

Urdu is written in a version of the Persian alphabet (itself derived from
the Arabic alphabet). The direction of the script is from right to left and
the shapes of most characters are context sensitive, i.e., depending on its
position within the word a character assumes a certain form.

To transliterate from Urdu to Latin script and vice versa is not a one-to-
one transliteration. The main reason for this are the diacritics and semivow-
els. Table 4.1 represents the four most frequent diacritics (of a total of 15;
Malik (2006, 13)) in combina-
tion with the letter H. ‘b’ and the sounds represented by the semi-vowels

4This section is based extensively on Bögel (2012), written by the first author.
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ø
 ‘yeh’ and ð ‘wao’, respectively.

H. + diacritic Name Latin transliteration

�H. Zabar ba

H.� Zer bi

�H. Pesh bu

�H. Tashdid bb

Semivowels

ð Wao v, O, U, o

ø
 Yeh y, E, I, e

Table 1: The four most frequently used Urdu diacritics and the two semivow-
els

The vowels signified by the diacritics are always short. Long vowels are
indicated by capital letters (e.g., ‘E’); short vowels are in lower case (e.g.,
‘e’). The Tashdid indicates gemination.

A difficulty for Urdu NLP is that the diacritics are generally not used
in Urdu text. Coupled with the range of interpretative possibilities for the
semivowels, this results in the (over-)generation of words which are not part

of the Urdu language. Consider Figure 2, where the word A�J» kuttA ‘dog’ is to
be transliterated. The word contains two vowels and a geminated consonant.
Without diacritics, the written word consists of just three letters: k, t and
A. If the transliteration system hypothesizes all possible short vowels and
geminated consonants, there are six possibilities.

kuttA
kutA

A�J» kittA

kitA
kattA
katA

Figure 2: Overgeneration for the sequence A�J» kuttA ‘dog’

Phonotactic constraints usually reduce the number of forms. For example,
Urdu does not generally allow consonant clusters, with a schwa added to
loan words like school or station to make them conform to Urdu phonotac-
tics (s@kul or @steSon). Strings such as ktA therefore do not form part of
the search space that needs to be considered for words as in Figure 2. Fur-
thermore, final short vowels should not be hypothesized as they are always
indicated in the script (*ktAi). These and other phonotactic constraints
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were implemented in transliterator to reduce the number of possible out-
comes.

However, even with phonotactic constraints, there is still usually more
than one logically possible option for transliteration, often several, as in
Figure 2. One way to reduce the number of possibilities are lists of Urdu
words that the system can match against. However, static word lists do not
allow for alternate spellings and exclude ‘mixed’ words in which some of the
diacritics are written, but not all of them. Furthermore, a word list is never
complete, as languages constantly coin or importing new words. English has
been a major source of new lexical items in Urdu, due to intensive language
contact over several centuries. Urdu texts thus often include English words
in Latin script.

As a result of these considerations, the Urdu-Latin transliterator was
designed to include: (a) a word list against which known words are matched;
(b) a default transliteration component that allows the transliteration of
unknown words in the Urdu script. Furthermore, the system includes a
default Latin ‘transliterator’ to allow for words in the Latin script to be
parsed as well. The next section describes these components in detail.

4.2 Basic components

The Urdu transliterator integrates three layers of restrictions that constrain
the transliteration possibilities for a word in Urdu script.

First, a word list is incorporated. The FS transliterator works with a
Latin script list of Urdu words derived from two resources: (a) a word list
that was compiled in the process of creating a dictionary and was shared
with us by our colleagues from CRULP;5 (b) a word list compiled from the
Urdu finite state morphology (Bögel et al., 2007, 2009) (section 5). The
second word list increases automatically whenever an item is added to the
Urdu finite state morphology.

Second, based on the phonotactics of the language, regular expression
filters reduce the possibilities proposed by the transliterator. Consider the
filter in (1).

(1) [ ∼[ y A [a |i |u] ]]

In Urdu a combination of [y A short vowel ] is not allowed, as indicated by the
negation (complement) symbol ∼. A filter like (1) disallows all generations
that match the sequence.

Third, the FST must be able to deal with unknown items. In the Ur-
duGram FST architecture, items that do not match the word list are first

5The Center for Research in Urdu Langauge Processing (CRULP) was located at the
National University of Computer and Emerging Sciences in Lahore, Pakistan. It has been
superseded by the Center for Language Engineering (CLE) at the University of Engineering
and Technology in Lahore, Pakistan (http://www.cle.org.pk/).
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passed through the phonotactic constraints filter before being fed into the
default transliterator, thus allowing a maximum number of transliterations
while preventing extensive overgeneration.

These three components are implemented with the finite state techniques
proposed in Beesley and Karttunen (2003). To compose these within a single
network, while maintainging efficiency, several layers of the transliterator re-
used during the transliteration process.

4.3 The Overall Transliterator Architecture

Figure 3 illustrates typical instances of transliteration with respect to two

sequences: H. A
�J » kitAb ‘book’ and �I ». The latter transliterates to an

unknown word kt, potentially corresponding to the surface forms kut, kat or
kit. Recall that neither consonant clusters nor final short vowels should be
hypothesized by the system (cf. section 4.2).

Step 1: Transliteration part 1 Step 1 of the FST contains a character
mapping from Urdu to Latin (left column) and an identity mapping com-
ponent for both Urdu and Latin (right column). Even though phonotactic
filters are applied during the Urdu-Latin mapping, the output of the basic
transliterator shows (part of) the overgeneration caused by the underspeci-
fied nature of the script, e.g., for the word
H. A

�J», a total of 24 transliterations are possible.
The network also contains a default Urdu and a default Latin compo-

nent (right column) where the respective characters are matched against
themselves (e.g. k:k, r:r). That is, an Urdu script word will not only be
transliterated into the corresponding Latin script, but will also be ‘translit-
erated’ into itself plus an identificational tag. The Urdu script default one-
to-one mappings are marked with a special identification tag ([+Uscript])
for further processing.

Step 2: Word list matching and tag deletion In step 2, the output
is matched against the Latin word list (s.a.). When there is a match (as it
is the case for kitAb), the respective word is tagged [+match]. Following
the matching, a filter is applied which erases all output forms that contain
no tags, neither [+match] nor [Uscript+]. Consequently, there are two
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Step 1 Transliterator Default Urdu/Latin
(Urdu to Latin) (identity relation)

↓ ↓

...
kitAib kut
kitAub kit
kattAb kat
kuttAab
...

Uscript+ �I»

Uscript+H. A
�J»

↓

Step 2 Latin word list:
Tagging matching Latin words with +match

Filter:
Keep only tokens with tags [Uscript+ |+match]

↓ ↓

kitAb +match Uscript+ �I»
Uscript+H. A

�J»
↓

Step 3 Urdu word list:
Delete matching Urdu words

Filter:
Delete all tags

↓ ↓

kitAb �I»
↓ ↓

Step 4 Default Urdu/Latin Transliterator
(identity relation) (Urdu to Latin)

↓ ↓
kat

kitAb kit
kut

Step 5 Further processing/Tokenization

Figure 3: Transliteration of �I» and H. A
�J»

choices left for H. A
�J» ktAb (one transliterated ‘matched’ form and one default

Urdu form) while �I» ktb is left with only the default Urdu form.

Step 3: Distinguishing unknown from overgenerated entities The
Urdu word list applied in step 3 is a transliteration of the original Latin word
list, which was transliterated via the present FS transliterator system. That
is, the Urdu word list is a mirror image of the Latin word list. During step
3, the Urdu script words are matched against the Urdu word list, deleting
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all the words that find a match. By definition, all of the words that found
a match in the Latin word list in step 2 will also find a match in the Urdu
word list in step 3, while all unknown entities will fail to match. As a
result, any Urdu script version of an already correctly transliterated word
is deleted, while the Urdu script of an unknown entity is kept for further
processing. Finally, the tags of the remaining entities are deleted, which
leaves the correct transliteration of the known word kitAb and the unknown
Urdu script word �I».

Step 4: Transliteration part 2 The remaining words are again sent
into the FST of step 1. The Latin transliteration kitAb passes through the
default Latin transliterator, effectively matching kitAb against kitAb. The
unknown Urdu script word is transliterated into all three possible forms kit,
kut, kat.

Step 5: Final adjustments So far, the transliterator only applies to
single words. To allow the transliterator to process entire texts, the FST
network is composed with a standard tokenizer (section 3). Effectively, the
tokenizer first breaks the text into words and then the transliterator applies
to each word. The resulting composed FST is used within the Urdu ParGram
mconfig, which specifies the tokenizers and morphologies used for parsing
and generation (see Section 6).

4.4 Transliteration Summary

The Finite State Transducer for Urdu ↔ Latin transliteration described
above is a constrained, yet flexible, efficient, and robust system. The price of
ensuring dynamic flexibility in the transliteration from Urdu to Latin is that
the system generates non-existent words due to the underspecified nature
of the Urdu script. This overgeneration is reduced by applying layers of
restrictions based on Urdu phonotactics and the incorporation of word lists.
The transliterator thus distinguishes between items unknown to the word
list (kat, kut, kit) and non-existent items like kittAub, thus restricting the
possible combinations while always producing at least one transliteration.

The nature of an FST is that parsing input equals generation output.
For the transliterator this means that if diacritics are optionally parsed, then
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they will be optionally generated. To avoid this, two transliterators were
created for generation: one which obligatorily generates Urdu script with
diacritics and one which generates text without any diacritics; mixed cases
are not allowed. Both generators use the architecture described above and
only require minimal adjustments. The transliterator can also be used to
convert text without diacritics to text that contains diacritics by parsing a
text without diacritics and then generating one with diacritics. Texts with
partial diacritics can be transliterated and then generated either as fully
without or fully with diacritics.

5 Morphological Analysis

Urdu ParGram grammar provides a basis for processing both Urdu and
Devanagari scripts by means of transliterators to Latin script. Thus, the
input to the Urdu morphological analyzer must be in Latin script. The
morphological analyzer is similar to those used in other ParGram grammars
and was custom-built for use in the Urdu grammar following the guidelines
in Beesley and Karttunen (2003).6 Although the morphology was built for
the Urdu grammar, it was designed to function as a stand-alone module.
For example, it can be used as a lemmatizer, to provide potential parts of
speech, and as a morphological analyzer for other grammars.

The Urdu morphological analyzer associates surface forms of words with
a canonical form (a lemma) and a series of morphological tags that provide
grammatical information about that form. An example for English is shown
in (2) and for Urdu in (3).

(2) pushes: push +Verb +Pres +3sg
push +Noun +Pl

(3) bOlA bOl +Verb +Perf +Masc +Sg

(2) states the English pushes can either be the third singular form of the
verb push or the plural of the noun push. (3) states that the Urdu bOlA is
the perfect masculine singular form of the verb bOl ‘speak’.

In developing the Urdu morphological analyzer, we found that the finite-
state tools and solutions to problems like the application of phonological
rules or reduplication outlined in Beesley and Karttunen (2003) met the
challenges posed by the Urdu morphological system.7

6Not all ParGram grammars use custom-built morphologies: some ParGram grammars
(e.g. English, German) incorporate existing morphological analyzers (Butt et al., 1999).

7This includes derivational morphology and compounding.
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Part of Speech Number of lemmata
Nouns 210
Verbs 100
Adjectives 124
Adverbs 71

Table 2: Lemma coverage of the Urdu/Hindi morphology

5.1 Morphological Coverage

The morphology covers all the inflected forms for nouns, verbs, adjectives,
and adverbs, as well as closed-class words such as postpositions and con-
junctions. Table 2 shows how many lemmata of the major verb classes
are covered by the morphology. The focus in building the morphological
analyzer was to cover all of the types of verbal paradigms. This work is
complete and now new lemmata can be added very simply into the existing
word classes.

Beesley and Karttunen’s (2003 definition of finite-state morphology al-
lows for non-concatenative morphology, the integration of phonological rules,
long-distance dependencies and a treatment of reduplication. The Urdu mor-
phological analyzer depends on all of these, particularly phonological rules
and reduplication (Bögel et al., 2007). It also makes heavy use of flags for
long-distance dependencies.

The number of simple verbs in Urdu is between 500–800 (Humayoun,
2006). The majority of verbal predication is achieved via complex predi-
cates, which can be composed of nouns, verbs, adjectives or adpositions in
combination with a light verb (Butt, 1995, Mohanan, 1994). A significant
part of the Urdu grammar development effort concerned the treatment of
complex predicates (Hautli et al., 2012, Ahmed et al., 2012, Butt et al.,
2012, Hautli-Janisz, 2014, Sulger and Vaidya, 2014, Hautli-Janisz et al.,
2015). Morphological issues around predicate formation arose with respect
to morphological causative complex predicates (section 7).

In addition to the lemmata specified in the morphology, the morphology
contains a guesser. In many of the ParGram grammars, this guesser is a
separate FST which processes words which receive no analysis from the core
finite state morphology. In the Urdu grammar, there is a single finite-state
morphology which contains both the known words and a guesser to handle
forms unknown by the morphology. The guesser was designed primarily for
unknown names, but is also able to guess verbs and adjectives. The guesser
was designed according to the specifications in chapter 9 of Beesley and
Karttunen (2003).

The Urdu morphological analyzer represents a realizational morphol-
ogy (Karttunen, 2003), which is formally equivalent to Paradigm Function
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Morphology, an inferential realizational theory of inflectional morphology
(Stewart and Stump, 2006). As such, several pieces of morphology may cor-
respond to one feature, or one piece of abstract morphological information
may be “realized” by several different overt markers. Our design decisions
are consonant with this approach.

Several issues arose around the design of the morphological tag set. Re-
call from (2) and (3) that the morphological analyzer associates a surface
form with a lemma and a set of tags. These tags are a combination of
part-of-speech information such as +Verb, +Noun or +Country8 and tags
representing information such as +Fem, +Sg and +3P for feminine, singu-
lar and third person. Most of the tags follow straightforwardly from the
lingusitically motivated morphological analysis of Urdu. However, we faced
several design decisions.

First, it is possible to combine different types of information into one tag,
as in the +3sg tag in the English example in (2). However, we separated
out all of pieces of morphological information since that led to an interface
that is independent of the Urdu ParGram grammar.

Second, althoughwe generally designed the morphological analyzer to be
as explicit as possible, in some cases explicit analyses lead to unncessary
ambiguity. Consider the future forms. The future is formed via the verb
plus subjunctive morphology which also provides information about number
and person. This is followed by the future marker g, which is inflected for
number and gender morphology (A/I/E). An example is shown in (4). In
Hindi the verb and the future marking are written together, while in Urdu
they are written as separate words. As such, examples as in (4) present an
issue for tokenization (section 3) and morphological analysis. We normalize
the different writing practices in our transliterator and treat the verb plus
its future marking as one lexical item.

(4) mArUNgI ⇔
mAr+Verb+Subjunct+1P+Sg+Fut+Fem

From the perspective of the syntax, marking the form as both subjunctive
and future is redundant: every future form also carries subjunctive meaning.
Experience gathered with respect to the German grammar (Butt et al., 1999)
showed that it is better to eliminate tags of this kind from the morphology,
since dealing with them complicates the morphology-syntax interface. For
example, Urdu also uses the subjunctive morphology as a real subjunctive,
see (5).

(5) mArUN ⇔
mAr+Verb+Subjunct+1P+Sg

8The latter are particularly useful for named entity recognition applications, hence we
included them as part of the morphological analysis.
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Given that these subjunctive uses exist in parallel with the future use
in (4), the interpretation of the +Subjunct tag by the morphology-syntax
interface would need to differ depending on whether it is found in conjunction
with future morphology or not, thus complicating the interface. We therefore
eliminated the +Subjunct tag from the morphological analysis of future
forms, allowing for a cleaner morphology-syntax-semantics interface.

This same problem is found with respect to infinitives as in dEkHnA
‘to look/looking’,9 which are used as verbal nouns. The morphology could
potentially provide both the analyses in (6).

(6) dEkHnA ⇔
a. dEkH+Verb+Inf+Masc+Sg
b. dEkH+Noun+Deverb+Masc+Sg

However, this would result in unnecessary ambiguity since all infinitives are
also deverbal nouns. Instead, this option has been encoded as part of the
morphology-syntax interface (next section). The entry in (7) shows how
the grammar interprets the abstract tag +Inf. The tag is associated with
a functional annotation that states that words with this tag can optionally
(denoted by the round brackets) be used as a noun whose type is deverbal.

(7) +Inf ((↑ NTYPE) = deverbal).

This solution pushes the ambiguity from the morphology into the syntax,
where syntax can resolve the ambiguity via other information from the
clausal context.

5.2 Morphology-Syntax Interface

In this section, we show how the output of the Urdu FST morphology is
integrated into the Urdu LFG grammar. The morphology-syntax interface
is as described in Kaplan et al. (2004). The intuition behind the interface
is that the lemma and tags can be treated on a par with lexical items. For
example, in the lexicon, a tag +Past can be associated with the information
that the value of tense is past, as in (8).

(8) +Past (↑ tns-asp tense)=past

The “lexical items” coming out of the morphology, namely the lemma
and the tags, are assembed via sublexical rules into a word. LFG grammars
assume the notion of Lexical Integrity, which means that the terminal leaves
are syntactically independent items (fully formed words or clitics). With the
integration of a finite-state morphology, these terminal nodes of fully formed

9Capital H in the transliteration indicates aspiration of the preceding consonant.
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lexical items are replaced by the output of the morphology. The grammar
uses the output of the morphology as the leaves of the c(onstituent)-structure
tree. For example, the noun haftA ‘week’ forms a c-structure tree as in (9).

(9) NP

N

n base n sfx base n sfx base n sfx base n sfx base

haftA +Noun +Masc +Sg +Nom

The standard XLE LFG context-free rule formalism is used to assemble
the lemmata and tags into a sublexical tree as in (9). A sample context free
c-structure rewrite rule that produces the tree in (9) is shown in (10). The
rule states that an N is composed of an n base and at least one n sfx base

as indicated by the Kleene +.10

(10) N −→ n base

n sfx base+

Each of the leaf nodes in (9) has a lexical entry which provides the c-
structure information used to produce the tree and the f(unctional)-structure
information used to produce the syntactic LFG analyses. Like standard c-
structure rules, sublexical rules and lexical entries can be annotated with
information about f-structural information.

For common nouns like haftA ‘week’, no lexical entry is necessary. The
Urdu grammar only stipulates lexical entries for nouns which specify an
unpredictable subcategorization frame (e.g., nouns used with complex pred-
ication). In the case of haftA ‘week’, no such information needs to be stated.
The lemma haftA is contained in the morphological analyzer and the gram-
mar makes use of this by accessing it via XLE’s -unknown facility. This
facility provides a default lexical entry -unknown which can match any lex-
ical item from the morphology. Through it, the morphology itself provides
the lexical items, while the -unknown lexical entry provides the information
used to build the c- and f-structures. A simplified version of -unknown for
Urdu is shown in (11).

10The only way that these rules differ from standard c-structure rules is the presence
of base which indicates to XLE that these are sublexical rules. XLE uses this sublexical
indication for a default collapsed display of the c-structure so that only the N node is
shown with the inflected form under it, as shown in (i).

(i) NP

N

haftA
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(11) -unknown N XLE (↑ pred)=‘%stem’
(↑ ntype)=common

NAME XLE (↑ pred)=‘%stem’
(↑ ntype)=proper

A XLE (↑ pred)=‘%stem’
(↑ atype)

The %stem matches the form output by the morphology, in this case haftA
and is passed to the f-structure syntactic represention to create (↑ pred)=′haftA′

as well as contributing (↑ ntype)=common.
Besides the mapping between surface form and abstract tags and lem-

mata, the morphology-syntax interface allows for a many-to-many mapping
between lemmata/tags and functional/syntactic information. Lemmata and
tags may be associated with simple or complex functional annotations or not
be annotated at all and thus be “suppressed” for the purposes of syntactic
analysis.

The major advantage of integrating a finite-state morphology into a
grammar, however, is that the lexicons for the grammar can be relatively
small. This is because lexicons are not needed for words whose syntactic lex-
ical entry can be determined based on their morphological analysis and for
which nothing special need be said (i.e. as described for the -unknown entry
in (11)). This is particularly true for nouns, adverbs and adjectives. Items
whose lexical entry cannot be predicted based on the morphological tags
need explicit lexical entries. This is the case for items whose subcategoriza-
tion frames are not predictable, primarily for verbs. For each verb lemma,
a lexical entry is created with the required subcategorization information.
Due to the FST morphology, only a single entry is needed, corresponding to
that of the lemma; no entry is needed for the inflected forms, thus avoiding
the need for multiple entries for forms in morphologically complex languages
and simplifying grammar maintenance.

6 Specifying Configurations — MCONFIG

The FSTs used for tokenization, transliteration and morphological analysis
can in principle be invoked in different combinations. In the XLE platform
the arrangement of the FSTs is specified in the “mconfig” file (short for
“morphological configuration”) (Crouch et al., 2016). In this section, we
show how the Urdu grammar makes use of the power and flexibility afforded
by combination of FSTs.

The function of the mconfig file is to interface an XLE grammar with
external components. Within ParGram, these have generally been FST
tokenizers and morphological analyzers. The mconfig file is also the place
where further transducers can be introduced. For example, the transducer
which recognizes Multi-Word Expressions (MWE) and tokenizes these as
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one token, e.g., for New York or Saudi Arabia. The Urdu grammar also
makes use of a MWE FST (Hautli and Sulger, 2011), as seen in the Urdu
mconfig file in Figure 4.

STANDARD URDU MORPHOLOGY (1.0)

TOKENIZE:
P!TranslitParse.fst G!TranslitGenNoDia.fst

ANALYZE USEFIRST:
morph.override
urdu.fst

PARAMETERS:
*NOCAP

BuildMultiwordsFromMorphology:
Tag = +PreferMWToken

Figure 4: Urdu mconfig

The first line in the mconfig in Figure 4 is an identificatory line. The
tokenize section invokes the files relevant for tokenization. It allows for
the specification for two different files: one for parsing (indicated by P!)
and one for generation (indicated by G!). Since parsing and generation
have different goals, they often involve different tokenizers.11 The Urdu
mconfig file calls an FST that consists of the tokenizer and the transliter-
ator composed together (section 4). For generation, the version here does
not generate diacritics in the Urdu script. However, an alternative version
TranslitGenWithDia.fst can instead be used to always produce diacritics.

The Urdu grammar also allows for a further option. Rather than taking
Urdu script input, it is possible to specify in the mconfig file that already-
transliterated input be parsed and generated. This is useful for debugging as
it separates issues of script from issues of morphological and syntactic analy-
sis. In this case, rather than the custom-made transliterator plus tokenizer,
the default tokenizers for parsing and generation available as part of the XLE
package are called: P!/usr/local/xle/bin/default-parse-tokenizer.fsmfile
G!/usr/local/xle/bin/default-gen-tokenizer.fst.

The Urdu morphology is invoked in the ANALYZE section with urdu.fst.
There are two files: the Urdu morphology proper and an FST specificying
multiword expressions. The USEFIRST option specifies that the first file
applies before the Urdu morphology. This has the effect that the FST for
multiwords, morph.override, is applied first. Furthermore, as the last two

11For example, the parser needs to parse errors such as two commas in a row, whereas
the generator should not allow for this possibility to be output (see Jurafsky and Martin
(2006) for detailed discussions).
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lines of the mconfig file show, multiword expressions are provided with a
tag that allows the multiword version to be preferred (Frank et al., 1998).

Finally, the PARAMETERS option allows for the specification of further
parameters. The parameter shown here pertains to capitalization. Since
neither the Urdu script, nor Devanagari nor the common Latin transliter-
ation scheme need to be normalized for capitalization, this option is set to
NOCAP.

This section concludes the description of how finite-state morphologies
are used in the Urdu grammar. The design decisions laid out in Beesley
and Karttunen (2003) for morphological analyzers provide flexibility and
formal power while also being well designed for developers. The finite-state
morphologies can be integrated into grammar development platforms such
as XLE and provide grammar writers with the tools necessary for an efficient
and robust morphological analysis. Urdu is morphologically complex, but
the formal power in Beesley and Karttunen’s finite-state technology allows a
straightforward treatment of the morphology and provides a way to separate
the morphological issues from the complexities of Urdu-Latin transliteration.

7 Causatives and the Morphology-Syntax Inter-

face

This section describes an issue that arose with respect to the ParGram
treatment of complex predication in conjunction with sublexical rules (sec-
tion 5.2). The issues were observed in both the Turkish (Çetinoǧlu, 2009,
Çetinoǧlu and Oflazer, 2009) and Urdu grammars. Here we illustrate the
underlying problem with respect to Urdu.12

7.1 Complex Predicates via Restriction

The Urdu grammar uses the restriction operator (Kaplan and Wedekind,
1993) to model complex predication. The restriction operator allows for
features of f-structures to be “restricted out”, i.e., to cause the grammar to
function as if these features did not exist. This operation is applied to com-
plex predication in order to build complex predicate-argument structures
dynamically (Butt et al., 2003, 2009).

Consider (12). (12) is a noun-verb complex predicate in which kahAnI
‘story’ is an argument that is contributed by the noun yAd ‘memory’, but
that functions as the direct object of the clause. The finite verb kI ‘did’ has
two arguments: Nadya and yAd ‘memory’. The noun yAd ‘memory’ thus
plays a double role: it is an argument of the finite verb and it contributes
to the overall predication of the clause (Mohanan, 1994).

12We would like to acknowledge Özlem Çentinoǧlu, who was the first to track down the
root of the problem in the Turkish grammar.
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The details of theoretical and computational analyses of complex pred-
ication have been discussed in depth elsewhere (e.g., Butt 1995, Mohanan
1994, Butt et al. 2009). The f-structure analysis is as in (13) (simplified to
show only the predicate-argument relations).

(12) nAdiyah=nE kahAnI yAd k-I
Nadya.F.Sg=Erg story.F.Sg.Nom memory.F.Sg.Nom do-Perf.F.Sg
‘Nadya remembered a/the story.’

(13)










pred ′do<subj,′memory<obj>′
>

subj
[

pred ′Nadya′
]

obj
[

pred ′story′
]











This f-structure is achieved by a dynamic composition of the subcatego-
rization frames contributed by kar ‘do’ and yAd ‘memory’. The restriction
operator is invoked in f-structure annotations on the c-structure rules. While
the individual annotations differ according to the type of complex predicate
that is involved, (14) illustrates the general schema.

(14) Vcp → X Vlight
↓\OldGF\pred=↑\OldGF\pred ↑=↓

(↓OldGF) = (↑NewGF)
(↑ pred arg2)=(↓ pred)

To allow the predicate composition, the light verb is associated with
a subcategorization frame that is incomplete. In the case of kar ‘do’, the
subcategorization frame is as in (15). The %Pred stands for a variable that
needs to be filled in, following the XLE notation for variables.

(15) (↑ pred) = ‘kar< subj %Pred >’

The kar ‘do’ contributes a subject to the predication and also encodes the
fact that it is needs a predicate to fill its variable slot. This further predicate
is provided by the X in (14). The X could be a noun, an adjective, a
verb or an adposition. In our example, it is the noun yAd ‘memory’. The
annotation (↑ pred arg2)=(↓ pred) substitutes the pred value of yAd
into the second argument of the light verb. The subcategorization frame of
yAd is lexically specified as in (16) and contributes an object to the overall
predication.

(16) (↑ pred) = ‘yAd<OBJ>’
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The restriction operator restricts out those pieces of information which
are “changed” as part of complex predication.13 For one, the overall pred
value changes, since a value has been substituted for the variable. For an-
other, the complex predication may require grammatical functions to be re-
named. This does not occur in our example, but does occur with causatives,
discussed below. The OldGF stands for a grammatical function, be it a
subj, obj, obl or objθ that is being reassigned to a NewGF. To accom-
plish this, it is restricted out and the new correspondence is established via
the (↓OldGF) = (↑NewGF) equation.

The restriction operator is able to model different types of complex pred-
icates in the Urdu grammar and can model cases of stacked complex predi-
cates (Butt et al., 2009).

7.2 Causatives and Passives

Problems with the restriction operator arise in the interaction of passives
with causatives. Causatives in Urdu are formed morphologically, as in (17),
where the causative morpheme -A effectively adds an argument, the causer.
(17a) is an example of a simple transitive verb. In the causativized version
in (17b),14 the subject of the transitive is realized as the causee and is
marked with the dative/accusative kO. This is an example of a “change” in
grammatical function that can be effected via the restriction operator.

(17) a. yassIn=nE kHAnA kHa-yA
Yassin=Erg food.M.Sg.Nom eat-Perf.M.Sg

‘Yassin ate food.’

b. nAdyA=nE yassIn=kO kHAnA kHil-A-yA
Nadya=Erg Yassin=Dat food.M.Sg.Nom eat-Caus-Perf.M.Sg
‘Nadya had Yassin eat (fed Yassin).’

Causatives are also complex predicates since the overall argument struc-
ture is co-determined by more than one predicational element. Crosslin-
guistically, causatives can be either morphological or syntactic but the con-
straints on the formation of complex predicate-argument structures are the
same (Alsina, 1993). Following this insight from theoretical linguistics, the
Urdu grammar treats syntactically formed complex predicates like the N-V
complex predicates discussed above and morphologically formed causatives
on a par. The predicate-argument structure is calculated dynamically based
on the information contributed by each of the predicational parts and the

13As LFG is formally monotonic, the f-structures are not in fact changed. Rather, new
information is added onto already existing information. Pretty printing then gives the
effect of an f-structure “changing” into another one.

14The stem also changes in this case. The verb kHA ‘eat’ is one of a handful of verbs
in Urdu which shows an irregular stem formation in the causative.
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final, joint subcategorization frame is effected by the restriction operator.
With morphological causatives, this occurs at the level of sublexical rules.

The morphological analyzer provides the analysis in (18) for the verb
kHilAyA ‘made to eat’. As the tags are terminal nodes of sublexical rules, the
+Caus tag provides a phrase-structure locus for the restriction operator so
that it can be analyzed similarly to syntactically formed complex predicates.
The sublexical rule for the causative in (17b) is as in (19).

(18) kHilAyA ⇔ kHA +Verb +Caus +Perf +Masc +Sg

(19) V → V-S BASE CAUS BASE
↓\pred\subj=↑\pred\subj ↑=↓

(↓subj)= (↑obj-go)
(↑ pred arg2)=(↓ pred)

The causative tag is lexically associated with a subcategorization frame
that is parallel to that of the light verb kar ‘do’:

(20) (↑ pred) = ‘cause< subj %Pred >’

The variable is filled by the pred value of the main verb, the transi-
tive verb kHA ‘eat’. The basic f-structure for the non-causative version in
(17a) is shown in (21). When causativized, the subj is realized as an obj-

go. This is the result of the equations in (19) and the resulting complex
subcategorization frame is shown in (22).

(21)








pred ′eat<subj,obj>′

subj [ pred ′Yassin′ ]

obj [ pred ′food′ ]









(22)












pred ′cause<subj,′eat<obj-go,obj>′
>

subj [ pred ′Nadya′ ]

obj-go [ pred ′Yassin′ ]

obj [ pred ′food′ ]













Now consider the interaction with passivization. Passives in Urdu are
formed by combining the verb jA ‘go’ with the perfect form of the main
verb. The subject/agent of the base verb is realized as an adjunct and is
marked with se ‘with/from’, as shown in (23).

(23) a. yassIn=nE kHAnA kHa-yA
Yassin=Erg food.M.Sg.Nom eat-Perf.M.Sg

‘Yassin ate food.’
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b. kHAnA yassIn=sE kHa-yA ga-yA
food.M.Sg.Nom Yassin=Inst eat-Perf.M.Sg go-Perf.M.Sg
‘The food was eaten by Yassin.’

Passivization of the causative in (17b), repeated here in (24a), is as in
(24b), where the subject/agent of the causative is realized as an adjunct
marked by se ‘with/from’.

(24) a. nAdyA=nE yassIn=kO kHAnA kHil-A-yA
Nadya=Erg Yassin=Dat food.M.Sg.Nom eat-Caus-Perf.M.Sg
‘Nadya had Yassin eat (fed Yassin).’

b. yassIn=kO nAdyA=sE kHAnA kHil-A-yA
Yassin=Dat Nadya=Inst food.M.Sg.Nom eat-Caus-Perf.M.Sg

ga-yA
go-Perf.M.Sg
‘The food was fed to Yassin by/through Nadya.’

As originally implemented, the Urdu grammar did not parse examples
as in (24b) as grammatical. Moreover, it judged examples as in (25) as
grammatical. In this case the former indirect object (OBJ-GO) Yassin has
been analyzed as a former subject that is now realized as an agentive adjunct.

(25) *nAdyA=nE yassIn=sE kHAnA kHil-A-yA
Nadya=Erg Yassin=Inst food.M.Sg.Nom eat-Caus-Perf.M.Sg

ga-yA
go-Perf.M.Sg
‘Nadya made the food be eaten by/through Yassin.’

The underlying problem is architectural. Passivization has traditionally
been handled by lexical rules in LFG (Bresnan, 1982). These lexical rules
apply in the lexicon directly to the specification of subcategorization frames.
For example, the transitive verb kHA ‘eat’ has the subcategorization specifi-
cation in (26) as part of its lexical entry. (26) states that there is a predicate
‘P’ (kHA in our example) which has a subject and an object and which can
optionally undergo passivization. The ‘@’ sign signals a template call Dal-
rymple et al. (2004) to the template pass, which effects the passivization
via a lexical rule.

TRANS (P) = @(PASS (^ pred)=’P<(^ SUBJ) (^ OBJ)>’).

Since this is specified in the lexical entry of kHA ‘eat’, passivization always
applies before causativization. That is, the lexical rule is applied to the
V-S Base in (19). This is followed by the application of the causativization
restriction operator. However, passivization should operate on the entire
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complex predicate, so that passivization follows causativization. Once this
problem was identified, passivization was moved to be part of the sublexical
rules via the restriction operator, rather than the lexical rules.

7.3 Summary and Discussion

While the current solution to the passive-causative interaction works, it is
not satisfactory. The interaction between causativization and passivization
revealed an architectural problem in how argument alternations are treated
in the implementation. Within theoretical linguistics, argument alternations
are stated at a level of a(rgument)-structure and are independent of partic-
ular morphological or syntactic realizations. In the ParGram grammars,
passivization continued to be treated via lexical rules, as per classic LFG
(but see Wedekind and Ørsnes 2003). One reason for this is that a-structure
is not implemented in XLE: predicate arguments are modeled solely via sub-
categorization frames pertaining to grammatical functions. The interaction
between causativization and passives at the morphology-syntax interface
highlights that traditional lexical rules do not allow for the right order of
application when causativization is morphological but passivization is part
of the syntax. This realization was only made possible by the integration
of the computational morphological component represented by a finite-state
morphology á la Beesley and Karttunen (2003).

8 Conclusion and Discussion

We conclude that an integration of finite-state morphology, as well as tok-
enizing and in the case of Urdu transliterating finite-state transducers, into
a computational grammar taps into a powerful yet intuitive technology that
enhances grammar engineering substantially. It is thus a technology that
no computational grammar should do without. In the case of the finite-
state technology provided by Beesley and Karttunen (2003), the morpholo-
gial analysis and the morphology-syntax interface is in line with theoretical
ideas on the place of morphology in a modular architecture of grammar
(Karttunen, 2003, Dalrymple, 2015).
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