A Handbook for Language
Engineers

Ali Farghaly (eds.)

September 23, 2002

CENTER FOR THE STUDY
OF LANGUAGE
AND INFORMATION

September 23, 2002

September 23, 2002

Contents

1 Grammar Writing, Testing, and Evaluation 1
MiriAM BuTT AND TRACY HOLLOWAY KING

References 45

September 23, 2002

1

Grammar Writing, Testing, and
Evaluation

MiriaAM BuTtT AND TRACY HorLLowAy KING

1.1 Introduction

Grammar writing is a difficult and often underappreciated task in natu-
ral language processing.! A good grammar writer will have solid linguis-
tic instincts based on their linguistic knowledge and training. However,
a good grammar writer also has to have the ability and willingness to
cast aside lofty linguistic ideals when confronted with the harsh reality
of needing to get something done today rather than in ten years. In
addition, grammar development platforms can sometimes be limiting
in that the implementational possibilities do not always mirror current
linguistic theory. On the other hand, grammar development platforms
also often provide tools and possible approaches to coding grammars
which linguists have not considered, and which may thus open up en-
tirely new avenues of approaching a given linguistic problem.

A good grammar writer is therefore somebody who combines lin-
guistic knowledge with a solid practical ability and an understanding
and interest in the technical and computational aspects of language
processing. This combination is relatively rare, especially as grammar
writing is often a slow, laborious process. The task of a grammar writer
can be made easier by the existence of morphological analyzers (sec-
tion 1.2.7), large lexicons (section 1.2.6), and statistical methods (see

We would like to thank Emily Bender, Dick Crouch, Mary Dalrymple, Stefanie
Dipper, Regine Eckardt, Ali Farghaly, Jonas Kuhn and Heike Zinsmeister for their
help with this chapter.

A Handbook for Language Engineers.
Ali Farghaly (eds.).
Copyright © 2002, CSLI Publications.

September 23, 2002

September 23, 2002

2 / MIRIAM BUTT AND TRACY HOLLOWAY KING

chapter XXX) which make the grammar more robust (section 1.3).

Language is a system of complex interactions. As such, design de-
cisions made in one part of the grammar often have unforeseen conse-
quences in another part of the grammar. Unforeseen interactions be-
tween rules or modules make grammars difficult to expand systemat-
ically and to maintain (section 1.2.4), particularly if more than one
grammar developer at a time is involved. Systematic testing and evalu-
ation of grammars is therefore also one of the main tasks of the grammar
writer (section 1.5).

A grammar consists of rules which a parser can understand. A
parser is generally a computational implementation of a particular
linguistic theory or theoretical direction. For example, a GB parser
(Retoré and Stabler 1999) parses rules which presuppose tree repre-
sentations and movements assumed by Government-Binding theory
or, more recently, Minimalism (Stabler 2001). A Lexical-Functional
Grammar (LFG) or Head-Driven Phrase Structure Grammar (HPSG)
parser deals with rules which create the kinds of representations
assumed by these theories (trees and attribute-value matrices for
LFG; attribute-value matrices for HPSG). Various types of parsers
currently exist, including ones which assume a mixture of the-
oretical approaches such as the Trug parser of Siemens, which
models a type of tree-unification grammar (Block and Schachtl 1992).
Other well-known parsers assume Tree-Adjoining Grammar (TAG,
(Schabes et al. 1997, Abeillé and Rambow 2000)) and Categorial
Grammar (CG, (Steedman 2001, Morrill 1995); see also Carpenter’s
Type-Logical Grammar Theorem Prover (Carpenter 1998) which is
available on-line (http://www.colloquial.com/tlg/index.html).
The task of writing a parser differs considerably from the task of
writing a grammar which a parser can read. A grammar cannot be
run without a parser to parse it, just as any computer program cannot
be run without the underlying compiler for the language the computer
program is written in. See (Jurafsky and Martin 2000) and references
therein for information about writing parsers.

In this chapter, we primarily use LFG as a basis for discussing the
issues surrounding grammar development. However, regardless of the-
oretical persuasion, the job of a parser is to load a particular grammar
and other tools in order to take a natural language string as input and
produce a linguistic structure as output for that string. For a string like
(1), for example, some possible outputs are shown in (2). The outputs
in (2a) and (2b) are instances of what is known as shallow parsing.
The shallow parsing results in (2a) and (2b) illustrate part of speech
tagging and chunking, respectively (section 1.3). The LFG structures

GRAMMAR WRITING, TESTING, AND EVALUATION / 3

in (2c,d) are the result of a deeper level of analysis. The output of a
grammar can be of more than one type; for example, LFG grammars
output both trees (2c¢) and attribute-value matrices (2d).

(1) The group appeared.
(2) a. the/DET group/N appeared/V ./PUNCT
b. [the group]yp [appeared]yp .

C. S
/\
/NP\ V‘P PUNCT
DET N A%
the group appeared

d. |PRED appear

PRED group
SUBJ
SPECIFIER the

TENSE past

The choice of output depends on what the output will be used for. The
shallow parse outputs are both extremely useful for a variety of low-
level tasks, but cannot replace the type of deep analyses represented
by (2¢,d) for other tasks.

Many researchers and grammar developers subscribe to the idea that
an ideal grammar should be reversible. That is, the same grammar used
in a parser to produce the linguistic structures in (2¢,d) for the input
string in (1) should also be able to take the linguistic structure (or a
subset of it, such as just the attribute-value matrix in (2d)) as input
and produce a natural language expression as output. This process is
referred to as generation and represents the flip-side of parsing.

Grammars for natural language processing tend to be quite large,
even for limited domain applications. As such, testing and evaluation of
the grammar are a crucial part of grammar writing. These are discussed
in section 1.5. One thing to keep in mind is that large-scale grammar
writing shares many problems with all large-scale software projects. For
some ideas about how to handle large-scale and multi-person coding,
see Part IT of (Butt et al. 1999) or any of the many books written on
software development, such as (Maguire 1993) and (McConnell 1996).

This chapter is organized as follows. First we discuss both deep and
shallow parsing. We next discuss auxiliary mechanisms which can be
combined with deep parsing techniques and follow this by a section on
machine learning, describing efforts to arrive at grammars by a process

September 23, 2002

September 23, 2002

4 / MIrR1AM BUTT AND TRACY HOLLOWAY KING

of induction. Finally, we discuss testing and evaluation, which apply
to both shallow and deep grammar writing. The chapter ends with a
summary and suggestions for further reading.

1.2 Deep Grammars

In this section we describe the ideas and mechanisms behind grammars
which provide a deep analysis for natural language strings.

When computational linguistics first got underway in the 1950s, one
of its main goals was to build machine translation systems. The efforts
during World War IT had included a number of successful code cracking
episodes.? Then, during the Cold War, a crucial ingredient of counter-
intelligence measures was to read and understand the enemies’ com-
munications. Given that cracking coded enemy communications had
worked very well, it was thought that applying a version of that tech-
nology to develop machine translation systems should yield reasonable
results within a reasonable amount of time. However, language proved
to be a much harder problem than code systems devised artificially by
humans.

A prerequisite for building a good machine translation system is to
have an in-depth understanding of how natural language works and
to have formal tools which can model natural language adequately.
In the last few decades, our understanding of natural languages and
the formal tools used to describe them have grown considerably, but
they are still far from complete, thus leaving machine translation as a
basically unsolved problem (commercial machine translation systems
are currently available, but none of them are ultimately satisfactory).

1.2.1 Context-Free Grammars

In his pioneering work on syntax, (Chomsky 1957) argued that the
syntaz of a language was largely independent of semantics and world
knowledge. So, for example, all speakers of English can tell that (3)
is a well-formed sentence of English even though they may never have
heard it before and even though it represents semantic gibberish.?

(3) Colorless green ideas sleep furiously.

Chomsky therefore proposed the notion of phrase structure which
consisted of rewrite rules of the type shown in (4).

(4) a. S — NP VP

2Alan Turing, who is responsible for some of the foundational concepts within
computational linguistics and artificial intelligence, was involved in code cracking.
3 Another famous example is Lewis Carroll’s poem Jabberwocky.

September 23, 2002

GRAMMAR WRITING, TESTING, AND EVALUATION / 5

b. NP — DET N

c. VP — V NP

These rewrite rules or phrase structure rules, as they have come to
be known, parse an input string such as in (5). Their output can be
rendered in terms of a tree, as shown in (6).4

(5) The cat chases the dog.

(6) S
/\
NP VP
A /\
DET N A% NP
the cat chases /\
DET N
the dog

These phrase structure or rewrite rules are context free. A context-
free grammar is a set of rules as in (7a) and (7b), which are the non-
terminal symbols, and a lexicon, which encodes the terminal symbols.

The conclusion (Chomsky 1957) comes to is that context-free rules
are not sufficient to deal with natural language phenomena (for a very
good discussion of this issue see (Jurafsky and Martin 2000)). This con-
clusion continues to be widely accepted. However, context-free rules do
describe some useful properties of natural languages. These include the
fact that they are recursive and infinite. Consider recursiveness. En-
glish NPs can contain PPs which are comprised of a P followed by an
NP, as in (7).

() a. NP — DET N (PP)

b. PP — P NP

These produce a structure in which an NP contains an NP further
embedded in its structure, as shown in (8).

4The original motivation behind the tree structure was to keep a record of the
steps in the parsing process. These steps were understood to be a series of “deriva-
tions” by Chomsky.

September 23, 2002

6 / MIRIAM BUTT AND TRACY HOLLOWAY KING

(8) NP
DET N PP
the box /\
P NP
on
DET N
the table

Such structures are pervasive in natural language and all deep gram-
mars need to be able to encode recursiveness in order to obtain broad
coverage.

Recursiveness is part of the infinite nature of natural language. The
rule in (7), allows for strings like those in (9).

(9) a. [np the box [pp on [np the table]]
b. [np the box [pp on [np the table [pp in [np the room]]]]

c. [np the box [pp on [yp the table [pp in [xp the room [pp
under [np the roof]]]]]]]

Another simple example of the potentially infinite number of strings a
natural language can generate is provided by adjunct PPs in English.
As shown in (10), English potentially allows for an infinite number of
PPs.

(10) a. I saw it on the table.
b. I saw it on the table with a microscope.
c. I saw it on the table with a microscope on Thursday.
d. ...

This property of natural languages can be captured in phrase structure
rules by the use of the Kleene star (*) which allows for zero or more,
up to infinity, instances of a constituent. The PP examples in (10) are
represented by the phrase structure rule in (11).

(11) VP — V NP PP*

However, not all theories allow context-free rules with regular expres-
sions (see chapter XXX-corpora) on the right hand side.> Such theories
must find other ways to capture these generalizations.

Despite the recursive and infinite properties of context-free gram-
mars, some context-sensitivity is necessary. A classic example of this
is how to encode subject-verb agreement in English. The context-free

5Government-Binding or Minimalism, for example, do not rely on context-free
rules, but instead work with predefined sets of possible tree structures.

GRAMMAR WRITING, TESTING, AND EVALUATION / 7

rule in (13) allows for mismatched subject-verb agreement as in (12a),
for example.
(12) a. *The men arrives.

b. The man arrives.

(13) S —NP VP

To avoid this problem, context sensitive rules can be used. The equation
under the phrase structure rule in (14) indicates that the agreement of
node 1, the subject NP, must be the same as that of node 2, the verb
phrase.

(14) S — NP1 VP2
AGR1=AGR2

Basic context-free rules can also be enrichted to provide other infor-
mation. In LFG, for example, one extension to the context-free gram-
mar is to annotate the basic phrase structure rules, as shown in (15).

(15) a. S —» NP VP
(tsuB) = |
b. NP — DET N
(TSPECIFIER) = |
c. VP — 'V NP
(toBy) = |

Annotating the rules in this way is good for languages like English, in
which phrase structure position reflects grammatical function, e.g., in
English the subject is generally preverbal and the object immediately
postverbal. The annotations shown in (15a) identify the first NP within
a sentence (S) as the subject of the sentence. Determiners, as dealt with
by (15b), are identified as specifiers of the noun phrase, and finally, the
immediately postverbal NP is marked as the object in (15c).

Most other languages do not pattern in this way and thus require
different kinds of annotations. The ability to annotate phrase structure
rules with differing information, depending on the needs and require-
ments of individual languages, provides a very powerful mechanism for
the analysis of natural languages (Kaplan 1987).

1.2.2 Feature Unification

Many of the more popular computational grammatical frameworks
make extensive use of unification. While most frameworks use some
kind of feature representation and provide for feature unification, HPSG
and LFG make extensive use of unification. In this chapter, we demon-
strate how unification is used in grammar writing with LFG.

September 23, 2002

September 23, 2002

8 / MIRIAM BUTT AND TRACY HOLLOWAY KING

LFG includes two core syntactic representations: ¢(onsituent)-struc-
ture (a tree) and f(unctional)-structure (an attribute-value matrix),
illustrated in (17). The c-structure in (17a) is produced by the types of
phrase structure rules discussed in the previous section. As also men-
tioned in the previous section, the context-free phrase structure rules
in LFG are generally annotated with functional information whereby
the arrows encode mappings between nodes of the phrase structure tree
and the functional-structure. The ‘1’ refers to the particular AVM that
the phrase structure node in question corresponds to. The ‘]’ refers to
the node itself. These phrase structure annotations together with infor-
mation gathered from the individual lexical items yield the f-structure
representation in (17b).

(16) The cat chases the dog.

(17) a. S
/\
NP VP
/\ /\
DET N A% NP
the cat chases /\
DET N
the dog
b. [PRED ‘chase< SUBJ, OBJ >']
[PRED 'cat!
SPECIFIER the
SUBJ
NUM sg
| PERS 3
[PRED 'dog’
SPECIFIER the
OBJ
NUM sg
| PERS 3
| TENSE present]

The f-structure takes the form of an attribute-value matrix. That is,
a given feature or attribute such as SUBJ or NUM must have a certain
value. This value could be another attribute-value matrix, as is the case
for suBJ, it could be an atomic value, such as ‘sg’ for NUM, or it could
be a set, such as the values for CASE in (23) below.

Values of features may come from more than one source. For ex-
ample, in order to check whether the verb displays the proper agree-

GRAMMAR WRITING, TESTING, AND EVALUATION / 9

ment morphology, the verbal agreement feature values must be checked
against the feature values of the subject. In grammars such as LFG and
HPSG, the agreement features provided by the verb (NUM sg, PERS 3)
must be able to unify with the feature specifications of the subject.
For a sentence as in (18), for example, feature unification will fail
because the person features of the subject and the verb do not match,
the subject is third person whereas the verb cannot be third person.

(18) *The cat chase the dog.

(19) [PRED ‘chase< SUBJ, OBJ >']

[PRED 'cat!
SPECIFIER the
SUBJ
NUM
PERS
[PRED
SPECIFIER the
OBJ
NUM sg
PERS 3

| TENSE present

The feature clash in (19) illustrates the most basic kind of checking
which can be done via feature unification. However, more complex fea-
ture logics can be employed as well. For example, LFG also contains
the notion of an instantiated feature. Instantiated features cannot unify
with any other feature, even if it is of the same type. This ensures that
a feature can be supplied at exactly one place in the grammar and is
useful for phenomena such as particle verbs. In English, particles can
occur before or after the object, but not in both places at once, as seen
in (20) for the particle verb throw out.

(20) a. I threw out the trash.
b. I threw the trash out.

c. *I threw out the trash out.

If the particle provides the feature PARTICLE with the value out, then
the two out values in (20c) could unify to produce a (simplified) struc-
ture like in (21).

September 23, 2002

September 23, 2002

10 / MIRIAM BUTT AND TRACY HOLLOWAY KING

(21) [PRED 'throw< SUBJ, OBJ >’
SUBJ [PRED ’I’]
OBJ [PRED ’trash’]

PARTICLE out

This is undesirable and can be avoided by instantiating the value of the
PARTICLE feature (represented by an underscore on the value: out_) so
that it cannot unify with another instance of the feature.

Another method for the checking of feature values is feature indeter-
minacy (Dalrymple and Kaplan 2000). Feature indeterminacy is useful
when a given item appears to be compatible with more than one fea-
ture specification. One example which came up during the development
of the German grammar for the ParGram project (Butt et al. 1999) is
the function of the relative pronoun was ‘what’ in a free relative clause
such as (22). Here, the free relative was ‘what’ can function as the ac-
cusative object of gegessen ‘eaten’ at the same time as fulfilling the
requirements of lag ‘lay’ for a nominative subject.

(22) Ich habe gegessen, was auf dem Tisch lag.
I have eaten what on the table lay
‘T ate what was lying on the table.’

(Dalrymple and Kaplan 2000) propose that was ‘what’ be annotated
as being indeterminate between the features nominative and accusative.
That is, the case values of was ‘what’ are given as a set designator, as
shown in (23). This notation expresses the idea that the case values
of was ‘what’ are not atomic, but rather are a set. The notation also
provides an exhaustive enumeration of the possible members of the set.

(23) was: (tCASE) = {nom, acc}

The feature unification process of the f-structural analysis checks
whether the object of gegessen ‘eat’ has the case value ‘acc’ as re-
quired by the verb. A test as to whether the value ‘acc’ is a value for
the case feature of was ‘what’ yields a positive result. Similarly, a test
as to whether the value ‘nom’ is a value for the case feature of was
‘what’, as required by the second clause, also yields a possible result.
The two requirements are thus mutually consistent and the analysis is
well-formed.

Other methods of dealing with feature unification are possi-
ble. For example, the default unification logic as presented by
(Lascarides and Copestake 1999) provides a different set of well-
formedness possibilities. For an application of this approach to Finnish

GRAMMAR WRITING, TESTING, AND EVALUATION / 11

case licensing, see (Asudeh 2000).

The use of features in combination with different methods of uni-
fication thus allows for implementations which are both powerful in
terms of their linguistic descriptive power and yet mathematically well-
constrained. For further readings on features and unification in gen-
eral, see (Jurafsky and Martin 2000) and for HPSG in particular see
(Shieber 1986, Copestake 2002).

1.2.3 Semantic Representations

So far, we have not said very much about semantic analyses. This is
because the construction of a good semantic analysis is a much harder
problem than the writing of annotated phrase structure rules.

However, there is significant work on computational semantics, in-
cluding the definition of ontologies (chapter XXX) and the building of
knowledge representation systems (chapter XXX). We cannot do jus-
tice to the field of computational semantics here and therefore confine
ourselves to noting that due to the modular nature in which computa-
tional grammars are usually written, various theories of semantics are
often compatible with one and the same grammar.

In theories like HPSG, for example, which take a Saus-
surean sign-based approach to natural language, the syntax
is considered to be intimately connected to semantic analy-
sis. Despite this intimate connection between syntax and se-
mantics, computational implementations of HPSG have been
shown to be compatible with Discourse-Representation The-
ory (DRT) (Kamp and Reyle 1993) and Minimal-Recursion Seman-
tics (MRS) (Egg 1998, Copestake et al. 1999, Copestake et al. 2001,
Copestake 2002). The Linguistic Resources Online English Resource
Grammar (LinGO ERG, (Copestake and Flickinger 2000)) provides a
broad coverage syntactic and semantic grammar using MRS.

LFG has also been shown to be compatible with DRT (Reyle 1988).
In recent years the linear logic or glue approach to semantics has
led to significant research (Dalrymple 1999, Dalrymple 2001). This
linear logic approach in turn can be used with a number of se-
mantic frameworks including DRT (van Genabith and Crouch 1999b),
Dynamic Semantics (van Genabith and Crouch 1999a), and Inten-
sional Logic (Dalrymple et al. 1999). Within the ParGram project
(Butt et al. 1999), for example, analyses within glue semantics are
based on the f-structural analyses of a clause and are dealt with in
a separate module from the syntactic analysis.

General practice is thus to treat computational syntax and compu-
tational semantics as different modules of the grammar which interact

September 23, 2002

September 23, 2002

12 / MIRIAM BUTT AND TRACY HOLLOWAY KING

via an interface. Whether this is the most perspicuous method of deal-
ing with the interaction between syntax and semantics remains to be
seen. However, a realistic assessment of the current situation is that it
is relatively easy (though labor intensive) to achieve a broad-coverage
grammar which focuses on the morphological and syntactic proper-
ties of a language. A broad-coverage grammar which provides general
semantic and discourse-based analyses of large corpora, on the other
hand, so far remains out of practical reach, with the Core Language
Engine (Alshawi 1992) being one of the closest to this goal.

1.2.4 The Challenge of Deep Grammar Writing

Deep grammars are necessary for certain applications, particularly
those that need information about argument structure (i.e, who did
what to whom in a given event/action). However, they face a number
of problems that need to be addressed before using them in real world
applications. We discuss these challenges to deep grammars here.

One of the major problems facing deep grammars is robustness. For
many sentences, the deep grammar will not produce a parse either
because the syntactic or lexical structure involved has not yet been
incorporated into the grammar or because the sentence is not, in fact,
well formed. This is a problem even with closed domains in which the
vocabulary is relatively fixed and many syntactic constructions are not
used (e.g., interrogatives are absent in some domains). Although it is
possible to partially combat this problem by extending the grammar
and the lexicon (section 1.2.6 and 1.2.7), complete coverage is unlikely
to be achieved. As such, to ensure some output for any input, other
techniques are needed. One possibility is to use a shallow parser (section
1.3) when the deep parser fails. If the shallow parser is integrated into
the deep parser, it is possible to obtain complete parses for subparts
of the input. For example, an ungrammatical sentence like (24), which
could be the result of a cut and paste error, could be divided into two
parts, each of which obtain a deep parse.

(24) a. The box the box arrived.

b. parse for: the box

PRED "box’
SPECIFIER the
NUM sg
PERS 3

c. parse for: the box arrived.

GRAMMAR WRITING, TESTING, AND EVALUATION / 13

[PRED 'arrive< SUBJ >'
PRED "box!
SPECIFIER the

SUBJ
NUM sg
PERS 3

| TENSE past i

In extending coverage, grammar writers have to analyze structures
that are not normally dealt with in theoretical syntax because they are
not considered to be part of core grammar. This presents a linguistic
challenge that can result in interesting innovations.

Some examples of phenomena which are not often dealt with as part
of standard syntactic analyses are direct speech (quotations), headers,
and date and time expressions. These phenomena are prevalent in cer-
tain applications, such as those involving newspaper texts. Examples
are shown in (25) respectively.

(25) a. “The board of directors met on Thursday,” said John Smith.
b. Disputed Elections
c. They were registered on Monday, December 6, at 3:30 p.m.

Consider how to deal with instances of direct speech. There
is relatively little linguistic literature on this subject (e.g.,
(Collins and Branigan 1997)). In this case, the grammar writer can use
the existing theoretical literature to draft a computational treatment
of direct speech. However, there will not be ready answers for all of the
issues which arise with respect to direct speech, such as: Is the material
in the quotes the head of the clause or is the verb of saying the head?
How is the inversion of the verb of saying and the subject handled?
What happens when the material between the quotes is not the entire
utterance or when it is absent, as in (26)?

(26) a. The board of directors “met on Thursday,” said John Smith.
b. The board of directors met on Thursday, said John Smith.

In the English LFG grammar for the ParGram project
(Butt et al. 1999), these issues were dealt with as follows. The
material in the quotes is treated as the head of the clause; the verb
of saying and its subject are a type of parenthetical. Quotes are
allowed to surround any constituent and are permitted regardless of
whether the special quote parenthetical is present; conversely a quote
parenthetical can appear even when there are no quotation marks
present. This type of analysis may not always be aesthetically pleasing
to the theoretical syntactician, but the realities of the data force such

September 23, 2002

September 23, 2002

14 / MiriaM BuTT AND TRACY HOLLOWAY KING

considerations and can lead to insights into how these constructions
fit into the better understood parts of the syntax.

Conversely, a consideration of issues generally considered to be low-
level and mostly of technical interest can engender a useful linguistic
discussion. Within the ParGram project (Butt et al. 1999) an example
of this is the proposal of m(orphosyntactic)-structure. This new level
of representation was proposed as the result of a discussion of how
to treat local well-formedness features such as agreement morphology
on determiners and adjectives or verbal form. In German, for exam-
ple, a determiner such as der ‘the’ in (27) which inflects according to
a “strong” morphological paradigm must be followed by an adjective
which is inflected according to a “weak” morphological paradigm. Con-
versely, a weak determiner must be followed by strong adjectives.

(27) der graue Hund (German)
the.M.Sg.Nom.S grey.M.Sg.Nom.W dog
‘the grey dog’

These inflectional dependencies must be checked in order to ensure
syntactic well-formedness within the noun phrase. However, the weak
and strong inflectional features do not contribute any useful semantic
information, nor do they reflect deep language universal principles.

Another example along these lines are verb form dependencies in a
cascade of verbs and auxiliaries such as in the English (28).

(28) The dog will have been chasing the cat.

As is well known, the modal will selects a base form of the auxiliary
have: the forms had or having, for example, would have been ungram-
matical. The auxiliary have, in turn, selects the form of the auxiliary be:
being or be would have been ungrammatical, etc. Again, the precise ver-
bal form selected encodes a local dependency and does not contribute
much useful semantic information.

In the interests of parallelism in analyses across languages
(Butt et al. 1996), a level of representation was proposed which would
encode language dependent, idiosyncratic local well formedness infor-
mation. This idea, which was originally motivated by the need to find
a viable computational implementation, has since been taken up in the
theoretical literature as part of discussions on the morphology-syntax
interface (e.g., (Spencer and Sadler 2001, Frank and Zaenen 2000)).

Beyond the issue of the kind of phenomena grammar writers must
consider, the development of a broad coverage deep grammar also raises
several other issues which concern grammar writers but which do not
always concern theoretical linguists. Grammar maintenance and con-

GRAMMAR WRITING, TESTING, AND EVALUATION / 15

sistency,® for example, become a real issue (see section 1.5 on gram-
mar testing and evaluation). As such, implementational tools may be
needed which may not be of theoretical significance. In the LFG sys-
tem, templates are one such device (Butt et al. 1999). Templates are a
short-hand for a larger set of information: they permit a name associ-
ated with a complex set of formulas to be used instead of that set. To
increase their usefulness, templates can take arguments that substitute
for variables in the definition of the template. As such, they express lin-
guistic generalizations that would otherwise have to be often repeated
in the lexicon and grammar. One issue that arises with respect to tem-
plates is that one grammar’s convenience may be another grammar’s
theoretical claim. The inheritance hierarchies of HPSG do much of the
same work as the templates described here (Copestake 2002). However,
within HPSG, inheritance hierarchies are an important theoretical con-
cept, whereas within LFG a discussion of templates is usually not found
outside of the computational /implementational realm.

One example of a template is subcategorization frames for verbs.
These have to be entered many times in the lexicon and may contain
very complex information. A template for a particle verb might look
like (29).

(29) V-SUBJ-OBJ-PARTICLE(_PRED _PARTICLE) =
(tPRED) = '_PRED<(1sUBJ) (t0OBJ)>'
(TPRT-FORM)=_PARTICLE

Different particle verbs call this template with the relevant values, as
in (30).
(30) a. throw: @(V-SUBJ-OBJ-PARTICLE throw out.)

b. ring: @Q(V-SUBJ-OBJ-PARTICLE ring up.)

Templates can also call other templates so that deeply nested depen-
dencies can result. Having templates or a related implementational tool
decreases the chance of making a mistake since there is less to type (just
a template name, not all the contained information), increases consis-
tency (when changes are made they are made in just one place), and
shows generalizations (every place that a given template is called can
be found). Without such tools, writing large-scale grammars becomes
difficult as coverage is increased.

Another interesting problem as grammar coverage increases is rule
interaction. The addition of a rule may have unintended interactions
with other rules; these interactions may be desirable or may not. The

8Consistency is a goal of syntactic theory, but it is difficult to test without an
implemented grammar.

September 23, 2002

September 23, 2002

16 / MIRIAM BUTT AND TRACY HOLLOWAY KING

interactions can be extremely interesting from a theoretical linguistic
perspective as well as from a grammar writing perspective; only by im-
plementing a large grammar fragment can such interactions of analyses
be seen. Consider the following situation. The grammar allows both
transitive and ditransitive uses of verbs, as in (31).

(31) a. We sold boxes.
b. We sold the man boxes. (= We sold boxes to the man.)

A rule is added to allow noun-noun compounds for examples like (32).

(32) a. the tractor trailer
b. the door hinge
c¢. utility company stocks

The addition of this rule will result in (31b) having two parses: the
intended one and one in which sell is transitive and what is sold are
the man bozes (=boxes for men/of men). This is a syntactically vi-
able parse, but one that was unlikely to be foreseen. Generally, adding
rules, especially for less core constructions, results in more unexpected
interactions and more ambiguities.

Thus, as grammar coverage increases, syntactic ambiguity also in-
creases. It is not possible to eliminate this ambiguity in the syntax
without loosing coverage or suppressing correct parses. In addition, al-
though the range of possible parses for a sentence is interesting from a
theoretical perspective, most applications only want to have one parse,
the correct one in a given context. As such, this ambiguity is best dealt
with by a filter on the output of the syntax. This filtering effect can
be obtained from a number of sources. Semantics and world knowledge
(chapter XXX) can be used to process the output of the syntax and
eliminate certain incongruous parses. Consider the sentence I saw the
bug with the microscope. In the syntax, the PP with the microscope
could either attach to the object the bug or the VP saw the bug; both
are syntactically valid. However, world knowledge tells us that it is
more likely that the seeing event involved the microscope than that the
bug was carrying a microscope. A second approach to ambiguity is to
use statistical methods to determine which of the parses is the most
probable (see chapter XXX). By doing this, a ranked set of parses,
which can be reduced to the one most probable parse, is produced and
can then be used as input to applications.

1.2.5 Probabilistic Techniques and Grammar Writing

As mentioned in the previous section, probabilistic techniques can be
used in conjunction with deep grammars. In general, they are used to

GRAMMAR WRITING, TESTING, AND EVALUATION / 17

manage the ambiguity that results from broad coverage. In this sec-
tion we describe on how probabilistic methods can be combined with
grammar writing. Chapter XXX of this book discusses probabilistic
techniques in grammar engineering in more detail; a general discussion
can be found in (Jurafsky and Martin 2000) and a more detailed one
in (Manning and Schiitze 1999).

One way to use probabilistic techniques in conjunction with a
deep grammar is to have a separate program rank the output of
the deep grammar based on which of the outputs is most probable
(Johnson et al. 1999, Riezler et al. 2002). Under this approach, first
the deep grammar is used to parse a sentence. With a large scale gram-
mar operating on real world data, this can result in thousands of parses.
Then the probability ranking program takes these parses as input and
choses one as the most probable. This most probable parse can then be
used as the input to applications. As deep grammars gain in coverage
and hence in ambiguity, this technique is very promising for allowing
deep grammars to be used on large scale real world data.”

Although not a statistical approach, a version of Optimality The-
ory (Kager 1999), which involves ranked constraints, can be used with
a grammar to specify the more probable parses and hence to solve
some of the same problems that statistical approaches are used for
(for a discussion of the relation between the parsing-based application
of Optimality Theory marks and Optimality Theory in the theory of
grammar, see (Kuhn 2001)). Such an approach has been implemented
in the XLE system and is used by the LFG grammars in the ParGram
project (Frank et al. 2001, King et al. 2001). Optimality Theory allows
the grammar writer to mark certain constructions or lexical items as
dispreferred and others as preferred. As such, rare or ungrammatical
constructions can be marked in such a way that they only surface when
there is no other option. For example, in order to increase robustness,
the grammar may need to parse mismatched subject-verb agreement
since this is a common error found in natural language texts. An ex-
ample is shown in (33a), which contrasts with the grammatical (33b).

(33) a. *The men arrives.
b. The man arrives.

In order to allow the sentence in (33a) to parse, the subject agree-
ment features on the verb must be weakened so that they do not require
a third singular subject. However, it is undesirable to have them weak-

7 Another possibility is to combine the probabilities more directly into the parser
for the deep grammar. This approach is being taken in by (Manning 2000) with
respect to Probabilistic Head-driven Parsing.

September 23, 2002

September 23, 2002

18 / MIRIAM BUTT AND TRACY HOLLOWAY KING

ened all the time. So, a special mark is put in that tells the grammar
to only use that part of the grammar if no other parses are found. The
subject agreement for the verb arrives would now look as in (34).

(34) (1SuBJ NUM)=sg disjunct 1
(1SUBJ PERS)=3
or

OTmark: NoSubjVerbAgreement disjunct 2

When parsing (33b) the first disjunct in (34) is chosen since the second
disjunct is dispreferred. However, when parsing (33a) the first conjunct
results in a conflict when the features of the subject and verb try to
unify, as was seen in the discussion on feature unification (section 1.2.1).
So, although the second disjunct is dispreferred by the grammar speci-
fication due to the Optimality Theory mark, it is this disjunct which is
chosen. The choice of this disjunct results in a well-formed structure;
if needed for the application, the inherent ungrammaticality could also
be marked in the structure by some arbitrary feature such as STATUS
ungrammatical. This is shown in (35).

(35) *The men arrives.

PRED "arrive< SUBJ >/

!

PRED 'man

SPECIFIER the
SUBJ

NUM pl

PERS 3

TENSE present
STATUS ungrammatical

The previous example showed how certain constructions can be dis-
preferred so that they only occur when there is no other option. The
same technology can also be used to mark certain constructions as be-
ing more preferred than others. Consider the German sentence in (36).

(36) Hans sieht Maria. (German)
Hans sees Maria
‘Hans sees Maria.” or ‘Maria sees Hans.’

Due to the relatively free word order in German, this sentence can have
two readings, one in which Hans is the subject and Maria the object and
the other in which Maria is the subject and Hans the object. However,
speakers generally interpret the noun phrase in initial position as the
subject. So, we would like the grammar to prefer this reading. We can

GRAMMAR WRITING, TESTING, AND EVALUATION / 19

encode this preference by an Optimality Theory mark in the phrase
structure rules. A vastly simplified rule for German is shown in (37).

(37) S — NP \Y NP
(TsuBJ)=] =} (toBJ)=] disjunct 1
OTmark: InitialSubj
or or
(toBJ)=| (tsuBJ)=] disjunct 2

When sentence (36) is parsed, the first NP Hans can be either a subject
or an object according to the annotations on the rule in (37). However,
the Optimality Theory preference mark InitialSubj will guarentee that
is surfaces as a subject. Although this blocks a syntactically legitimate
reading of the sentence, this reading is rare in practice and thus the
tradeoff in greatly reduced ambiguity is considered worthwhile.® The
initial NP object option will only be chosen with nouns that cannot be
subjects for some other reason, e.g., ones with overt accusative (objec-
tive) case marking. Thus, having a system like the Optimality Theory
(dis)preference marks allows the grammar writer to increase coverage
and robustness while controlling ambiguity.

1.2.6 Lexical Knowledge

Beyond the coding of phrase structure rules in conjunction with context
sensitive annotations (and, perhaps, Optimality Theory marks), the
development of broad scale computational grammars requires a number
of resources without which the grammar could not exist. One such
resource is the lexicon. In addition to thousands of nouns, verbs, and
adjectives, every language contains a finite set of functional elements
such as auxiliaries, negation markers, complementizers or conjunctions.
These lexical items must be hand coded, as they contain idiosyncratic
and unique information.

Another difficult part of creating a large-scale lexicon is the informa-
tion needed to determine subcategorization frames and lexical seman-
tics which plays a role in the syntax. This is primarily true for verbs,
but also applies to nouns and adjectives. For example, a verb like eat
can be either intransitive or transitive, but not ditransitive, as seen in
(38).

(38) a. I ate.

b. I ate the cake.
c. *I ate him the cake.

80f course, in spoken language, differing intonation patterns serve to disam-
biguate the string. However, a parser processing text does not generally have access
to intonational information.

September 23, 2002

September 23, 2002

20 / MIRIAM BUTT AND TRACY HOLLOWAY KING

In languages like German, all of the verbs’ complements have to be
marked with a particular case. Furthermore, while verbs like go cannot
be passivized, verbs like eat can be. Finally, in languages like German
and the Romance languages, the lexical semantics of the verb deter-
mines which auxiliary is selected in periphrastic constructions.

This and other information is part of the lexical entry of a verbal
item. Lexicons are generally stem or lemma based. The lemma is a
canonical form of the word; in English this is usually the stem form.
That is, only the base form of a given verb, noun or adjective is listed
in the lexicon, not all of its morphological instantiations. For example,
push will be listed, but not pushes, pushed, or pushing. The inflected
forms of a lemma are derived via a morphological analyzer, discussed
in section 1.2.7. The existence of a morphological analyzer reduces the
potential size of lexicons by eliminating the coding of redundant infor-
mation. In English, this reduces the size of the verb lexicon by a factor
of four as most verbs have four surface forms; for other languages the
difference is more dramatic.

Lexicons containing this type of information can be compiled in var-
ious ways. The most obvious way is to handcode this kind of informa-
tion. However, as verbs (and nouns and adjectives) do not constitute
closed classes, the job is not finitely bounded and is furthermore te-
dious, error-prone, and time-consuming.

The past few years have seen the development of several tools which
allow the semi-automatic generation of large lexicons. These tools
generally use a combination of statistical methods, corpora searches,
and existing (but incomplete) hand coded resources. For example,
the German lexicon within the ParGram effort (Butt et al. 1999)
was produced semi-automatically (Eckle and Heid 1996, Eckle 1997,
Eckle-Kohler 1998) from a combination of data extracted from cor-
pora, such as machine readable and tagged newspaper texts, and ex-
isting resources specifying German verb subcategorization frames, such
as SADAW (Baur et al. 1994) and CELEX (Baayen et al. 1995). To give
an indication of the size of these lexicons, the current German verb
lexicon consists of more than 14,000 entries (i.e., verb stems; there are
over 28,000 verb stem-subcategorization frame pairs).

The semi-automatic development of lexicons based on statistical
data extraction methods continues to be a topic of intense research,
with new tools being developed on the basis of different combinations of
methodology (e.g., (Schulte im Walde et al. 2001)). This is in part be-
cause large scale lexicons are a very valuable language resource, whose
manual compilation is time-consuming. A large lexicon which can be
developed and updated quickly via a combination of freely available

GRAMMAR WRITING, TESTING, AND EVALUATION / 21

basic resources, such as machine readable dictionaries or news paper
texts, with fairly reliable statistical resources is a valuable industrial
commodity.

Finally, as lexicons grow and can cover many different types of texts
robustly, the ambiguity for each lexical item tends to grow. For exam-
ple, verbs and nouns may express very specialized meanings in technical
manuals or medical texts. These specialized meanings are often inap-
propriate for the parsing of a newspaper text. However, as they are
in the lexicon, the grammar will consider these readings to be viable
possibilities, thus increasing the number of parses for a given sentence.
To avoid a potentially exponential increase in ambiguities, many gram-
mars divide up their lexicons according to the domain being treated.
That is, there is a core lexicon which is used in all applications. This
core lexicon is supplemented by a lexicon of technical or medical terms,
for example, depending on the text to be parsed.

1.2.7 Morphological Analyzers

As mentioned in section 1.2.6, lexicons usually associate lexical infor-
mation with the lemma of that lexical item. In order to identify go as
the correct lemma for a form like went, grammars rely on morphological
analysis. At present, morphological analysis has reached quite sophis-
ticated levels, allowing grammars to interact with fast, broad-coverage
morphological analyzers.

Currently, most morphological analyzers or parsers use finite-
state technology (see (Jurafsky and Martin 2000), Chapter 3 for
a very good, detailed discussion of finite-state transducers and
(Beesley and Karttunen 2002)). Earlier systems tended to rely on stem-
mers which attempted to identify the correct stem of a lexical item
by applying basic heuristics as to the expected forms of morphemes
(Porter 1980). These stemmers are relatively quick and easy to imple-
ment for languages like English which have relatively little morphology.
As such they can still be used for applications such as information re-
trieval which do not necessarily have to rely on sophisticated morpho-
logical analysis. However, they cannot be used for more morphologically
complex languages or when more detailed information is necessary.

Morphological analyzers can function autonomously from a gram-
mar. The interface to a grammar is defined via a system of tags. Basi-
cally, morphological analyzers associate surface forms of words with a
stem form of the word and its relevant morphological information (and
vice versa). The morphological information is expressed in the form of
abstract tags. The tags represent formalism-neutral information in that
a given grammar can associate these tags with the syntactic informa-

September 23, 2002

September 23, 2002

22 / MIRIAM BUTT AND TRACY HOLLOWAY KING

tion appropriate to that grammar. As such, morphological analyzers
serve to interact with both the deep grammars discussed in this section
and the shallow parsers discussed in section 1.3.

Consider the surface form warning in (39) as an illustration of how
a morphological analyzer can interface with a grammar. The surface
form warning receives three possible analyses from the morphological
analyzer: it could either be a progressive verb whose lemma is warn or
a singular noun or adjective, whose lemma, is warning.

(39) warning
1. warn +Verb +Prog
2. warning +Noun +Sg
3. warning +Adj

Within the ParGram project (Butt et al. 1999), for example, the
tags provided by the morphological analyzer are used as the input to a
series of (sublexical) rules which parse the output of the morphology.
For instance, warn +Verb +Prog is a sublexical ‘phrase’ which consists
of the stem and two tags.

(40) the stem form: warn
the tags: + Verb, +Prog

Each morphological tag is listed and identified in the lexicon, just like
any other lexical item. That is, tags are lexical items, just like the stems
of canonical words. (41) shows entries for the stem form warn and the
two tags +Verb and +Prog. The lemma entry for warn contains some
part of speech information, namely that it is a verbal stem (V-stem),
and subcategorization information, namely that warn is a transitive
verb. The subcategorization information is generally drawn from work
on semi-automatic lexicon generation as discussed in section 1.2.6.

(41) a. warn V-stem @(TRANS-VERB warn)
b. +Verb V-tag
c. +Prog TENSE-tag (1TENSE-ASPECT)=progressive

In this example, the grammar associates no information with the +Verb
tag. This has the effect of ignoring the tag for the purposes of the func-
tional structure, although the tag is still used to build the tree struc-
ture. The tag +Prog, on the other hand, can be used to contribute the
information that the verb has progressive aspect. The tag is therefore
annotated with this information.

The stem plus the tags are parsed by the grammar via sublexical
rules as in (42). The annotations on the lemma and the tag now enter
the analysis of the string, just as the annotations on phrase structure
rules would.

GRAMMAR WRITING, TESTING, AND EVALUATION / 23

(42) V — V-stem V-tag TENSE-tag

Finite-state morphological analyzers are quite powerful and can also
be written to include information about words that is not, strictly
speaking, morphological in nature. For example, names will often be
tagged with the information that this is a proper name, locations will
be flagged as locations, as well as as proper nouns, etc.

It should be reiterated that the rather abstract system of tags allows
different interfaces to the grammar. The one described above is tailored
for interfacing with an LFG grammar, but other interfaces are possible.

Also note that while the development of a grammar is an unbounded
task, the development of a morphological analyzer is a finite task: there
are only a finite number of derivational and inflectional morphemes in
a language and the morphological formation rules do not tend to be
recursive, unlike the phrasal syntax of a language (although highly ag-
glutinative languages provide some interesting challenges to morpho-
logical analysis). Morphological analyzers rely heavily on lists of lexical
items in order to perform the basic lookup procedures which result in a
morphological analysis. Thus, while the list of lexical items tends to be
finite, new words are always being formed and foreign words are incor-
porated into the language. When one of these words is encountered, no
part of speech information is available; so, no morphological analysis is
possible and the parse for the sentence will fail.

New forms are particularly prevalant in information extraction tasks
where proper names from all over the world are encountered, e.g., when
parsing newspaper texts or scanning the internet. To avoid this prob-
lem, an additional morphological analyzer can be created which guesses
the part of speech for otherwise unrecognized forms. For English, such
a guesser would assume, for example, that a word comprised of a capi-
tal letter followed by a string of lower case letters is a proper noun and
that a word ending in an s is either a verb with a singular third person
subject or a plural noun.?

1.3 Shallow Grammars

As mentioned above, the ultimate aim of most grammar writing
projects is to arrive at a large-scale grammar which can parse mas-
sive amounts of natural language (e.g., on-line newspaper texts or
webpages) in a reasonably quick time and to do so robustly. As also

9A further resource needed for parsing in general is a tokenizer, which
takes an input string and pre-parses the punctuation, normalizes capitaliza-
tion, and recognizes special symbols. We do not discuss tokenizers any fur-
ther here, but see: (Karttunen et al. 1996) on tokenization in general and
(Asahara and Matsumoto 2000) on the ChaSen tokenizer for Japanese.

September 23, 2002

September 23, 2002

24 / MIRIAM BUTT AND TRACY HOLLOWAY KING

mentioned above, deep grammars which perform analyses of the kind
aimed for by linguists have so far had the practical disadvantage that
they take too long to produce a parse and that they often fail when
confronted with unexpected, unusual or ungrammatical instances of
natural language. While some of these problems are being alleviated
in more recent approaches to deep parsing (e.g., see the discussion in
(Butt et al. 1999, Copestake 2002)), a general dissatisfaction with the
amount of work it takes to write a deep grammar as compared to its
usefulness in certain applications has motivated researchers to look into
alternative parsing methods.

These methods have come to be known as shallow parsing. Rather
than supplanting deep analyses, current approaches sometimes inte-
grate shallow methods with the deep approach in order to produce
grammars which are robust and fast as well as intelligent. This is dis-
cussed in the next section.

Many shallow parsers are essentially sophisticated versions of part of
speech taggers (section 1.3.1): they use stochastic part-of-speech tag-
ging tools to provide a first approximation at the analysis of the sen-
tence (section 1.3.2). Another method that has gained popularity in the
last few years is that of identifying useful chunks of a natural language
string, even if a deep or complete analysis of the entire string can-
not be provided (section 1.3.3). These kinds of shallow grammars are
extremely useful for certain applications. For example, they are used
extensively in information extraction and related applications such as
question answering.

As already mentioned, one of the major advantages of shallow gram-
mars is their robustness. For any input, no matter how “ungrammati-
cal” or unusual, the grammar will produce an output. This is in stark
contrast to most deep grammars; however, as discussed in section 1.2,
deep grammars have begun to incorporate certain shallow parsing tech-
niques to improve their robustness.

1.3.1 Part-of-Speech Tagging

Part-of-speech (POS) tagging involves taking a natural language string
and determining the part of speech of each word (and each piece of
punctuation) in the context of the string. Consider the sentences in
(43) or the famous pair in (44), furnished by the Marx brothers.
(43) a. The ducks flew off.

b. The boxer ducks to avoid a hit.

(44) a. Time flies like an arrow.
b. Fruit flies like a banana.

GRAMMAR WRITING, TESTING, AND EVALUATION / 25

Both sentences in (43) contain the word duck. However, in (43a) ducks
is a noun referring to a type of bird, while in (43b) it is a verb referring
to a motion. The same kind of ambiguity is found in (44), where the
word flies either denotes a noun or a verb and like either a verb or a
preposition.

A good POS tagger marks this difference by noticing the surrounding
context of the words. So, in (43a) ducks is immediately preceded by a
determiner the and followed by a verb flew; in (43b) it is preceded
by a noun bozer and followed by a formative to which introduces an
infinitival. The surrounding words thus provide clues as to the possible
POS one could assign to ducks. One possible POS tagging of these
sentences is shown in (45); note that ducks, off, a, and hit could all
have other POS tags in different environments.

(45) a. The/DET ducks/N flew/V off/ADV

b. The/DET boxer/N ducks/V to/PREP avoid/V a/DET hit/N

Good POS taggers achieve an accuracy rate of over 90%, with
the better taggers recording an accuracy rate of 96% to 97%
for English; some taggers for Japanese are over 99% accurate
(Asahara and Matsumoto 2000). Because POS taggers work with
stochastic methods, one important component of a POS tagger is the
type of tag set which is used. Developing the right tag set for a lan-
guage is something of an art. It involves a combination of linguistic
knowledge and fine judgement of how many differentiations are useful
for improving the stochastic accuracy of a POS tagger. The tag set
can also be influenced by the application for which it is intended; some
applications require much more detailed tags than others.

Tag sets are crucial to treebanking tasks since they are used as the
bottom leaves of the phrase-structure trees to be annotated from the
corpus. As such, specialized tag sets, based on POS taggers, have been
created for treebanking tasks. The pioneering TAGGIT system used for
the Brown corpus (Francis 1964, Francis and Kuéera 1982) included
87 different labels or tags. The now widely used Penn treebank tagset
(Marcus et al. 1993) uses only 36 different tags (excluding tags used to
process punctuation): this was found to increase accuracy significantly
(the accuracy of the Brown corpus tagging via TAGGIT was around
77%). Some typical tags are illustrated in (46). As can be seen, the
POS tags do not always correspond to the traditional parts of speech
as taught in schools.

September 23, 2002

September 23, 2002

26 / MIRIAM BUTT AND TRACY HOLLOWAY KING

(46) Tag Use Example
CC Coordinating Conjunction and
CD Cardinal Number 2
DT Determiner the
NN Noun, singular or mass notebook
NNS Noun, plural notebooks
RP Particle up
TO to to
VB Verb, base form appear
VBD Verb, past tense appeared

The tagset most commonly used for German is the STTS (Stuttgart-
Tiibingen Tagset). It includes 54 tags. The 18 extra tags (as compared
with the Penn Treebank tagset) primarily deal with the more com-
plex verbal morphology in German and with the various pronominals
and adverbials (Schiller et al. 1999). Well-known taggers and tag sets
tend to include the Xerox tagger (Cutting et al. 1992), which uses a
finite-state lexicon and a morphological analyzer in conjunction with
stochastic methods. For further discussion and readings see Chapter 8
in (Jurafsky and Martin 2000). While a number of excellent POS tag-
gers are available for English and some of the European languages,
the demand for POS taggers in languages outside of this set has been
increasing steadily.'?

In addition to being used to determine POS, POS taggers often dou-
ble as stemmers. Stemmers take the surface form of a word (i.e., the
one found in the natural language string) and turn it into a canonical,
stem form. In this way, POS taggers are an implementation of a mor-
phological analyzer in that they attempt to recognize and to produce
the correct forms of words. Although this is a relatively simple task in
English, it is crucial in languages with substantial inflectional morphol-
ogy in which each stem form has numerous surface forms. An English
example is shown in (47); note that the stem form can also be a surface
form (see also the discussion of stems in section 1.2.7).

(47) a. Stem form: push
b. Surface forms: push, pushes, pushed, pushing

Stemmers can simply canonicalize surface forms to the stem. As
mentioned previously, this is all that is needed for certain applications,
such as simple information extraction techniques. However, stemmers

10The methodology for building POS taggers continues to improve. One recent
direction is the use of neural nets, e.g., (Nakamura et al. 1990, Schmid 1994).

GRAMMAR WRITING, TESTING, AND EVALUATION / 27

can also provide information as to the grammatical category of the
stem when it has that surface form. This grammatical information can
be presented in the form of tags that follow the stem. Some possible
tagged forms for the surface forms in (47b) are shown in (48).

(48) a. push: push/N/SINGULAR, push/V/NON-3SINGULAR
b. pushes: push/N/PLURAL, push/V/3SINGULAR
c. pushed: push/V/PAST-PASSIVE
d. pushing: push/V/PROGRESSIVE

In (48b) the form pushes can either be a plural noun (They gave it
siz pushes.) or a verb with a third singular subject (He pushes it.).
Although many applications only use the POS information, the more
detailed information can be used, for example, as input to deep gram-
mars (section 1.2).

Since POS taggers are used in a variety of applications, such as
spell checkers and information mining systems, we recommend that all
grammar writers become familiar with them even if they will not be
writing a POS tagger themselves.

1.3.2 Smart Annotation

A more sophisticated use for POS taggers is as the core engine for smart
tree annotations. The Penn Treebank, for example, used the tagset and
tagger discussed above to provide a “first pass” at parsing a natural
language string. A human annotator then went over the output of the
tagger, corrected the tags where necessary, and bundled the tagged
elements into constituents (Marcus et al. 1993).

The structure arrived at by this combination of stochastic POS tag-
ging and human analysis is generally represented by means of a tree.
These tree analyses are stored in what is called a treebank. A tree-
bank represents a potentially valuable language resource: annotated
corpora of texts. The annotated corpora most often represent a shal-
low parse of a given natural language string, though efforts to build
LFG- and HPSG-based treebanks have taken shape over the last few
years (e.g., the TIGER project at IMS Stuttgart (Brants et al. 2002)
and the Redwoods (Oepen et al. 2002) (Oepen et al. 2002) project at
Stanford University). These shallow parses can be used to investigate
linguistic phenomena such as the distribution of subjects vs. objects or
the occurrence of certain kinds of prepositional phrases.

Treebanks are useful resources for other types of research, such as
grammar induction (section 1.4) and grammar testing (section 1.5). The
Penn Treebank is the most well established treebank to date and thus
provides a resource for researchers working on English. The production

September 23, 2002

September 23, 2002

28 / MIRIAM BUTT AND TRACY HOLLOWAY KING

and storage of treebanks for other languages is one of the tasks which
currently engages the computational linguistic community.

In recent years, the human labor involved in making treebanks has
decreased markedly. This is due in part to more sophisticated user
interfaces that are available with some of the taggers, in part to the
more sophisticated morphological analyzers (section 1.2.7), and in part
to the application of statistical methods for grammar induction.

Several smart annotators exist for German. One example is the
TreeTagger, which has been used to tag German, French, Italian
and Greek texts (Schmid 1995). Another good system is Annotate
(Brants and Plaehn 2000). This tool allows for the interactive semi-
automatic annotation of corpora. In addition to allowing for basic
stochastic POS tagging, Annotate also provides some interactive pars-
ing via cascaded Hidden Markov Models, thus building up constituency
information as well, as shown in Figure 1.

This system also allows the user to define new phrase structural cate-
gories on-line, thus providing help in the manual annotation of analyses.
Furthermore, the system “watches” the users as they treebank; through
watching and keeping statistic track of the decisions and choices made
by the user, the system “learns” the grammar rules the user is follow-
ing. The practical effect is that the system will provide the user with
what it thinks the right constituency analysis is and guesses correctly
about 70% of the time, again relieving the user of some of the manual
labor involved in treebanking.!!

A system such as Annotate thus provides a semi-automatic shallow
parser which can then be used to create a more structured treebank.
Other kinds of shallow parsers use mainly finite-state technologies (e.g.,
(Chanod and Tapanainen 1996)). A further kind of shallow parser is
based on the notion of chunk parsing; these are discussed in the next
section.

1.3.3 Chunk Parsing

The notion of parsing only chunks of a sentence in order to achieve
robustness was pioneered by Steve Abney (Abney 1991, Abney 1996a,
Abney 1996b). The basic idea behind chunk parsing is to provide a ro-
bust parsing mechanism which concentrates on identifying the major
“chunks” in a sentence, without having to worry about the attachment
ambiguities which have plagued traditional deep analysis grammars.

1 Treebanking software has also been developed for the LKB (Linguistic Knowl-
edge Building) system (Copestake and Flickinger 2000) for HPSG as part of the
Redwoods project. This system allows for dynamic treebanks of full linguistic analy-
ses. These can be updated automatically as the grammar they are based on changes.

September 23, 2002

GRAMMAR WRITING, TESTING, AND EVALUATION / 29

o
2
b
g
2
&
<

FIGURE 1 Screen shot of the Annotate system

September 23, 2002

30 / MIRIAM BUTT AND TRACY HoLLOWAY KING

Note that these chunks are usually labeled with basic category informa-
tion. A PP-attachment problem is illustrated in (49). A deep grammar
will provide two analyses for this sentence, one in which the PP with
the telescope is attached high, i.e., has scope over the verb, and one in
which the PP modifies just the noun phrase the monkey.

(49) Shankar saw the monkey with the telescope.

A chunk parser, in contrast, returns only one analysis, something of
the sort shown in (50).

(50) [pp Shankar] [yvp [v saw [pp [DET the] [Np monkey]]]] [pp [p with]
[Dp [DET the] [np telescope]]]

As seen in (50) a basic chunk parser does not worry about what over-
arching categories to assign to relatively complex syntactic formations.
Instead, it identifies basic chunks and returns these. Another example
is shown in (51), taken from (Abney 1991).

(51) [I begin] [with an intuition]: [when I read] [a sentence], [I read it]
[a chunk] [at a time].

Abney cites psycholinguistic evidence from sentence processing
which appears to confirm his intuition that a good way to deal with
sentence analysis is to begin with the identification of chunks. Ques-
tions that arise immediately are how to define a chunk and how to
tell where a chunk begins and ends. These questions are addressed by
Abney and are the subject of continuing research.

Like most other shallow parsers, chunk parsers depend heavily on
POS taggers to provide the initial information that helps the parser
identify chunks. For example, if a POS tagger correctly identifies the
with in (49) as a preposition (P), then the chunk parser can group the
following DP together with the preposition in a prepositional phrase
(PP).

This preprocessing via POS information and the successive regroup-
ing of individual words into larger and larger chunks is generally accom-
plished by a cascade of finite-state transducers whereby the output of
one transduction is used as the input for another (Abney 1996a). The
reliance on well-understood computational tools such as POS taggers
and finite-state transducers creates a good development base for chunk
parsers: they work with well-known techniques to identify very basic
chunks and can thus be relied upon to handle large amounts of data
in a robust and useful manner. See (Jurafsky and Martin 2000) for an
explanation of the formal properties of finite-state transducers and how
they work, also 1.2.7 for an application within morphology.

GRAMMAR WRITING, TESTING, AND EVALUATION / 31

One particular industrial application is that of entity finders. Entity
finders are used to locate certain types of noun phrases and classify
them. This is especially useful for the extraction of specialized termi-
nology from technical texts such as manuals, patents, or medical texts,
and for information extraction from a large corpus such as the web.

The identification of noun phrases is known as noun chunking
(Schiller 1996, Schmid and Schulte im Walde 2000). Consider the sen-
tence in (52) and some possible outputs in (53).

(52) President Clinton visited the Hermitage in St. Petersburg,.

(53) a. [President Clinton]yp visited [the Hermitage]xp
in [St. Petersburg]np.
b. [President Clinton]xp [visited the Hermitage in
St. Petersburg]vp.

The parse in (53a) is an example of noun phrase chunking. It picks out
only the noun phrases, ignoring the verb wvisited and the preposition
in. In contrast, the parse in (53b) provides a basic structure for the
sentence, marking the subject noun phrase and the verb phrase.

The very basic noun chunking seen in (53a) is usually augmented
with more details to perform entity extraction, just the way that POS
tagging can be augmented with further grammatical information. One
way to augment an entity extractor is to provide information as to the
type of entity found. These usually work with proper nouns, ignoring
common nouns and non-nominals. So, the three entities found in (53a)
might be further labelled as in (54); for domain specific uses even more
finely grained distinctions can be made.

(54) a. President Clinton/NP/PERSON
b. the Hermitage/NP/ORGANIZATION
c. St. Petersburg/NP/LOCATION/CITY

Another way to use an entity extractor is to extract domain-specific
terminology from documents. This is particularly useful in technical
and scientific domains which often use very specific, multiword terms.
An extreme example is provided by biology. The biochemical domain in
particular employs very specialized terminology which is further char-
acterized by a very specialized noun phrase syntax.. Identifying these
specialized terms is important both to obtain lists of the terms and,
more frequently, to determine which terms appear in which contexts.

1.4 Machine Learning and Grammar Induction

Another effort which is connected with the general area of grammar
writing is the idea of machine learning as applied to grammar induction.

September 23, 2002

September 23, 2002

32 / MIRIAM BUTT AND TRACY HOLLOWAY KING

The idea behind grammar induction is that given a suitably annotated
corpus, it should be possible to program a computer to learn or induce
a grammar for that corpus. Given the amount of time and training
required to write grammars manually, grammar induction via machine
learning is a growing field which has led to workshops and special jour-
nal issues devoted to this topic (e.g., (Cardie and Mooney 1999)).

The most popular resource for this kind of research is again the
Penn treebank (Marcus et al. 1993) which is used for creating treebank-
derived probabilistic parsers. Within LFG, for example, this treebank
is being used as the core corpus for the induction of LFG grammars
(Frank 2000, Sadler et al. 2000). One immediate result of this type of
effort is the creation of further language resources, namely LFG analy-
ses of sentences which have themselves been banked and are available
for further study.

Another type of effort (again within LFG), has been to use
data-oriented parsing methods (Bod and Kaplan 1998) to induce
LFG analyses from an annotated corpus like the Penn tree-
bank. There is also recent work on HPSG data-oriented parsing
(Neumann and Flickinger 2002, Neumann 2002). For a general intro-
duction to data-oriented parsing see (Bod et al. 2002).

Grammar induction can also be done based on plain text, perhaps
in conjunction with a POS tagger or a similar shallow parser. This is
grammar induction in the narrow sense of the term. The advantage of
this approach is that it is possible to obtain large amounts of data and
not be limited to existing annotated corpora such as the treebanks. As
is the case with statistical approaches and other automatic learning,
grammar induction works better the larger the amount of data which
is available.

However, certain types of grammars are difficult to induce from texts;
generally, the more detailed the output of the grammar is to be, the
harder it will be to use unmarked/unprocessed texts to induce the
grammar. As such, much grammar induction is done at least in part
on marked up (i.e, tagged or annotted) text. Also note that the value
of linguistic knowledge is often not highlighted in such approaches, but
is extremely important since in most cases it is linguistic knowledge
that underlies the machine learning. For more information on grammar
induction, see (Charniak 1993) and (Manning and Schiitze 1999).

1.5 Grammar Testing and Evaluation

Grammar writing is like any large, evolving major software project: it
requires disciplined testing and evaluation tools to be successful. Good

GRAMMAR WRITING, TESTING, AND EVALUATION / 33

testsuites and testing practices and solid evaluation tools are invalu-
able in any large-scale grammar writing project. In this section we
discuss the basics of testing, evaluating, and documenting grammars.
The TSNLP (Testsuites for Natural Language Processing)!? project,
and its successor the DIET (Diagnostic and Evaluation Tools for Nat-
ural Language Applications) project, deal with issues of testing and
testsuites in detail; see also (Nerbonne 1998) which includes a paper
on TSNLP and (Oepen and Flickinger 1998).

1.5.1 Testsuites

Testing the grammar is usually done using testsuites. Testsuites are lists
of grammatical and ungrammatical sentences and other constituents
that the grammar should be able to parse (or, in the case of the un-
grammatical sentences, should not receive an analysis). In this section
we first discuss some general testing policies and the types of testsuites.

Testing Policies

We suggest three basic policies for testing; the three are meant to be
used in conjunction with one another. Having an agreed-upon test-
ing policy is particularly important when there are multiple grammar
writers whose changes to the grammar must be merged. Note that as
processing speed and parsers improve, the grammar writer’s ability to
run detailed testsuites increases greatly.

Policy 1: The testsuites should be written first. When starting on a
new phenomenon, the grammar writer should create a basic testsuite
for that phenomenon before beginning any grammar writing. This has
two advantages. The first is that the grammar writer will have a better
idea of what the phenomenon entails. This is especially true if some of
the data is extracted from corpora. The second is that there will already
be a testsuite in existence for when the new rules need to be tested. The
pre-grammar writing testsuite can be augmented during development
by adding in any sentences that were tested during development. Such
sentences tend to be simple, but crucial.

For example, if relative clauses are about to be added to the gram-
mar, the first step would be to list as many relative clause types as
possible (e.g., relative pronoun as subject, as object, reduced relatives,
extraposed relatives). Then a number of relative clauses can be ex-
tracted from an existing document by searching for relative pronouns;
reduced relatives, which do not contain relative pronouns, can be ex-
tracted from a tree bank. Finally, all the phrases that are parsed during

12Information about the TSNLP project can be found at the DFKI web site
http://cl-www.dfki.uni-sb.de/tsnlp/.

September 23, 2002

September 23, 2002

34 / MIRIAM BUTT AND TRACY HOLLOWAY KING

development can be added, such as the relative pronoun in isolation.

Policy 2: Records of past grammar performance should be kept.
Keeping records of past performance is extremely useful for determin-
ing progress in grammar development and for determining how long a
problem has existed. As grammar coverage increases, the testsuites will
grow and the number of sentences receiving parses will increase; stor-
ing past test runs provides documentation of this. Another use for such
records is to see whether a given sentence has ever parsed successfully.
If it has, the records will show when it stopped being parsed and hence
help indicate what grammar changes might have caused the problem
or if it has gained spurious parses.

Policy 3: Testing should be required before releasing a grammar re-
vision. After any change to the grammar, testsuites for both the new
phenomena and for the entire grammar must be run. This detects any
interaction of the new phenomena with the existing rules and any unin-
tended interactions with other grammar writers changes. Any detected
problems must be fixed and the entire testsuite rerun before releas-
ing the changes. This policy can either be enforced by using programs
which will not allow a grammar release without a test run or can sim-
ply be a policy observed by all the grammar writers. Although this
detailed testing can be tiresome, especially for minor bug fixes, it saves
time in the long run since there will be many fewer bug reports from
the grammar users.

Types of Testsuites

There are three basic sources for testsuites. First, the grammar writer
or someone else can make up the data for the testsuite. This is essen-
tial for the maintenance of the grammar since such testsuites are tuned
to the intended coverage of the grammar. In addition, there are some
standard testsuites available, such as the HP or TSNLP (Testsuites for
Natural Language Processing) testsuites which cover a large number of
linguistic phenomena. These testsuites can be interesting in that they
show what other grammar engineers feel is important in grammar cov-
erage. Finally, real world data can be used in testsuites. For example, if
the grammar is meant to parse technical manuals, a typical manual can
be broken into sentences or other constituents and parsed as a testfile.
Although such testsuites are difficult to use for basic development, they
are invaluable in hunting down unintended interactions between rules
(and they can be very enlightening as to what is considered grammat-
ical). In addition, they can be used to prioritize phenomena to cover
and to discover relevant non-core constructions which do not appear in
standard testsuites.

GRAMMAR WRITING, TESTING, AND EVALUATION / 35

When writing a testsuite, the test items should be tested in isolation
and in context, e.g., in a sentence. The isolated versions make sure that
the basic construction is working, while the contexted versions detect
interactions with other rules. For example, when testing adjectives,
first the basic adjective and adjective rule should be tested and then
the adjective in context, as in (55). Note that the items in (55) are
not parses, but instructions to the parser on what it should parse: i.e.,
flimsy should be parsed as an adjective, the very flimsy box as an NP.

(55) a. ADJ: flimsy
b. ADJP: very flimsy
c. NP: the very flimsy box
d. S: It is very flimsy.

In addition to having testsuites which focus on a particular phenom-
ena, larger testsuites that combine phenomena should be created. As
a first step, a master testsuite can be created by combining all of the
specialized testsuites (for maintainability purposes, it may be easier to
write a script that just calls the individual testsuites instead of actually
copying them into one large file). If such a testsuite is then combined
with some actual corpus examples, a good idea of the grammar’s per-
formance can be obtained.

Another way to create a testsuite that covers the grammar is to
extract a testsuite from the comments in the grammar (Broker 2000).
That is, for each (sub)rule in the grammar, a comment is created with
an example of what that (sub)rule parses. These are then collected and
parsed as a testsuite. Such testsuites give a good idea of current gram-
mar coverage, especially when used with more specialized testsuites
that show the intended coverage of the grammar.

In addition to formulating testsuites of items that are covered by
the grammar, testsuites of items that are ungrammatical should also
be created. These avoid problems with overgeneration. For example, in
a testsuite on verb agreement, in addition to forms like those in (56),
ungrammatical forms like those in (57) should also be included.

(56) They run. She runs.
(57) *They runs. *She run.

Note that part of the testsuite should include some kind of notation
which marks the input as ungrammatical (if it is indeed ungrammat-
ical). This mark should be one which the parser either knows how to
deal with, or which does not interfere with the normal processing of
the parser. Also note that although a sentence may be ungrammati-
cal, it may actually occur in input such as a newspaper text that the

September 23, 2002

September 23, 2002

36 / MIRIAM BUTT AND TRACY HoLLOWAY KING

parser must be in a position to deal with. Furthermore, a sentence may
actually turn out to be well-formed under some unintended reading.
As such, testsuites must often be parametrized to account for these
differing possibilities.

For example, when testing the English auxiliary system, a sentence
like (58) should generally be blocked.

(58) *They have appearing.

This sentence is ill-formed under the reading where the have is an aux-
iliary and the appearing is a main verb (cf. They have appeared.). How-
ever, it is well-formed under the reading where have is a main verb and
appearing is a gerund. Ideally a testsuite should therefore be able to
record on what grounds a given sentence was blocked.

With all types of testsuites, it is important to determine not only
that a test item gets a parse, but that that parse is the correct one.
One way to do this is to randomly parse some of the test items to
determine whether the parse is correct. However, when possible this
checking should be automated. A basic way to do this is to encode as
part of the test item some basic information that must also be checked
(Kuhn 1998). For example, a testsuite of verb subcategorization frames
can include in it which noun is the subject, which the object, etc. Two
possible encodings are shown in (59), one which has the information as
part of the string and one which has it after the string.

(59) a. [SBJ They] pushed [OBJ it].
b. They pushed it. [they=SBJ; it=0BJ]

Once a sentence can be parsed by the grammar, another approach is to
save the correct parse structure, or a stripped down version of it, and
have it compared to the current parse structure. For example, a system
which includes semantic analysis might compare just the semantics of
the sentence, with the assumption that the correct semantics could
only be achieved if the correct syntax was also present. Regardless of
the approach, running testsuites, even extensive ones, without checking
for correctness of the parses can lead to trouble.

1.5.2 Other Testing Mechanisms

There are two other testing mechanisms that we briefly mention here:
checking which rules are used and running a generator.

Ideally, every (sub)rule in a grammar is used for some construction.
To make sure that rules have not fallen out of use, a testsuite that is
supposed to test the entire grammar can be run and a record can be
kept of which rules in the grammar are actually used in the parsing. If

GRAMMAR WRITING, TESTING, AND EVALUATION / 37

rules are not being used, either the testsuite is incomplete or the rule
is not needed and should be pruned to increase efficiency.

Most grammars are written in the context of parsing. That is, the
grammar writer chooses a sentence, parses it, and checks if the output
is correct. However, even when testsuites checking for ungrammatical
parses exist, such grammars often overgenerate: they allow many un-
grammatical strings that the grammar writer is unlikely to think of.
For this reason, having a generator, as well as a parser, can be a useful
tool for testing, even if the grammar is not intended for generation.
The basic idea is to parse a sentence and run the output through the
generator. If more than the input string is returned, then the grammar
may need to be constrained, although if all of the output strings are
grammatical, then no changes may be necessary. Note that in a free
word order language like German, overgeneration is to be expected.
For example, since German allows extraposed relative clauses, the gen-
eration of relative clauses will always include the extraposed version in
addition to the non-extraposed one.

1.5.3 Parse Failure and Problem Identification

Once a testsuite is run, the problem is then how to most efficiently
locate and fix the problems that were found. How best to do this will
in part depend on the grammar being used and the preferences of the
grammar writer. In general, the bigger the grammar and the less famil-
iar the grammar writer is with the grammar, the harder it will be to
find the problem. Below we briefly outline a few techniques that should
be applicable to most grammars.

The basic idea behind locating the problem is to first determine
what is working and thus, by process of elimination, determine what is
not. This can be done in a variety of ways. First, the grammar writer
should determine that the parser recognizes all the lexical items in the
sentence correctly; this can be done by parsing them individually or by
substituting a known word in for one that you suspect is causing the
problem. For example, if the sentence is I went to Booneuville and the
grammar writer suspects the grammar does not recognize Booneuville,
parse I went to London. If the London sentence parses, then either
Booneuville is not recognized or it is not assigned the correct analysis.
Second, the grammar writer can simplify the sentence until it parses.
Some ways to do this include: removing modifiers like adverbs, putting
pronouns in for nouns, parsing only one conjunct of a coordination.
Once the sentence parses, the phrases can be added in until the one
causing the problem is located. Similarly, the subconstituents of a sen-
tence can be parsed individually. If they all parse, then the problem

September 23, 2002

September 23, 2002

38 / MIRIAM BUTT AND TRACY HoLLOWAY KING

must be in how they combine.

Debugging of this type cannot be eliminated (and, in fact, can be
quite interesting). However, it is possible to avoid some of the more
common problems. One is to have a program to check that rules are
properly formatted and that they are free of obvious typos before any
sentences are parsed. In addition, the parser may also do checking for in-
consistencies when it loads the grammar. Use of templates can also help
in avoiding typos and ensuring consistency. A second is to document
all rules; what is obvious now will not be tomorrow. Documentation
is especially crucial if there is more than one grammar writer. Finally,
keeping a list of grammar changes and known problems is useful; if a
known bug in the grammar is encountered frequently, it should become
a high priority for the grammar writer to fix.

1.5.4 Analysis of Text for Linguistic Patterns

Analyzing a text for linguistic patterns is difficult. However, if a gram-
mar is being created from scratch, knowing what phenomena need to
be included can save time. For general large-scale grammars, using a
general purpose testsuite, like the HP or TSNLP testsuites, may prove
useful.

If the text corresponds to a treebank as opposed to just strings, it
may be possible to extract linguistic patterns from the treebank itself.'?
For example, knowing what constituents can be daughters of VP can
guide the construction of the VP rule and of the verb subcategorization
frames. Also, specialized testsuites can be derived in this way since
all the instances of a given type of constituent can be formed into a
testsuite, e.g., a testsuite of NPs or of PPs. Even without a treebank, a
chunker can be run over the text to pick out NPs. Although there are
likely to be mistakes in the resulting list, it can still provide a useful
guide to grammar development.

For limited domain grammars, analysis of the corpus can be used to
derive lexicons. By restricting the lexicon to only the relevant words
or word senses, ambiguity can be greatly reduced. One way to do this
is to run a part of speech tagger over the corpus to obtain a list of
nouns, verbs, adjectives, and adverbs. A list of closed class items can
also be obtained this way, although the grammar writer might want
to reclassify some of the POS tags. With a treebank of a corpus, sub-
categorization frames can be extracted for various items. For example,
nouns that subcategorize for that clauses (e.g., the idea that the earth
is round) can be extracted. See section 1.2.6 for more details.

131n fact, the grammar itself can be extracted from the treebank; see section 1.4
on grammar induction.

GRAMMAR WRITING, TESTING, AND EVALUATION / 39

1.5.5 Evaluation

The idea behind evaluation is to determine how good the grammar is.
There is no industry-wide standard for grammar evaluation, though
there have been efforts to arrive at such a standard. Some examples of
such projects are the EAGLES (Expert Advisory Group on Language
Engineering Standards) and DiET (Diagnostic and Evaluation Tools
for Natural Language Applications).'* However, one as yet unresolved
difficulty is that not all grammars share the same assumptions as to
the type of syntactic analysis that should be applied. Furthermore,
for special purpose grammars such general purpose evaluation is not
important. That is, a special purpose grammar only needs to parse a
specific genre of language, e.g., airline reservation dialogs, and not all
of English.

Most evaluation techniques involve treebanks of structures for large
natural language corpora. One famous one is again the Penn treebank,
which is also known as the University of Pennsylvania Wall Street Jour-
nal corpus (Marcus et al. 1994). The idea behind such treebanks is that
a grammar should produce all (and only) the structures found in the
treebank; not producing a structure or producing additional structures
counts as a failed parse (see (Manning and Schiitze 1999) for discussion
of using labeled bracketing as a measure for probabilistic parsers).

However, comparison against tree structures does not work for many
types of grammars (and even if they do, even the most carefully con-
structed treebanks contain errors and inconsistencies). First, even if the
grammar in question only produces tree structures, there may be funda-
mental differences in analysis. Such differences are usually systematic,
e.g., phrase structure nodes may have different names or all relative
clauses may have a different attachment level in the noun phrase. Sec-
ond, many grammars either do not produce tree structures or the tree
structures are only part of the analysis (e.g., HPSG and LFG based
grammars). For such grammars, a new type of evaluation is needed.
(Carroll et al. 1999) have suggested such a schema in which what is
evaluated is the number of dependencies (grammatical functions) that
are correct (see also (Xia et al. 1998) for a similar approach). Gram-
mars which use tree structures can define the dependencies via tree
position, e.g., an object is an NP under VP, while other grammars
may encode this directly. This type of technique is especially neces-
sary for evaluating languages with free word order where determining

4More information on these projects can be found at EAGLES
and DFKI web pages: http://www.ilc.pi.cnr.it/EAGLES/intro.html,
http://lrc.csis.ul.ie/research/projects/DiET/index.html.

September 23, 2002

September 23, 2002

40 / Mir1AM BUuTT AND TRACY HoLLOWAY KING

the grammatical function via the phrase structure tree is impossible.
This type of grammar evaluation is gaining credence and new stan-
dards are being developed; see the proceedings of the Language Re-
sources and Evaluation conferences (LREC) which began in 1998 (e.g.,
(Bangalore et al. 1998)).

Finally, note that a specialized testsuite can be created for evalua-
tion purposes if the grammar is for a limited domain. The basic idea
is to create the ideal parse for each sentence (i.e., a tree or a set of de-
pendencies) and then compare the actual parses to that ideal. This is
extremely time consuming, but may be necessary where high accuracy
is essential.

1.5.6 Documentation

Documentation is a necessary part of grammar writing. This is es-
pecially true for large-scale grammars: the grammar rapidly becomes
extremely complex and there is often more than one person working on
the grammar (either at the same time or sequentially). It is generally
useful to think of two types of documentation: one within the grammar
itself and one as an overview of the grammar. These are necessarily
related as they describe the same grammar.

When working on the grammar, it is invaluable to have documenta-
tion of each rule in the grammar. This documentation should include
what the rule does, along with a couple of example sentences. In addi-
tion, the various subparts of the rule should also be marked as to their
purpose, with examples. For example, the simplified partitive rule in
(60) contains some basic in-grammar documentation in the form of
comments; the comments are enclosed in double quotes.

(60) NPpart — “This is the rule for partitive NPs.”
“Ex: some of the apples”
“It is called by the main NP rule.”

(DetP) “Optional determiner phrase.”

Npart “The head of the partitive.”
“These are a closed class.”
“Numbers are a subset of Npart.”
“Ex: five of the apples”

PPpart “The of phrase”
“The oblique argument of the Npart.”

Finally, it is useful to include comments as to why a particular analysis
was chosen. Although this seems immediately obvious when the rule is

GRAMMAR WRITING, TESTING, AND EVALUATION / 41

written, it may not be so transparent at a later date or to some other
grammar writer.

The documentation just described is very useful for grammar writers
who have some basic familiarity with the grammar. However, it does not
give a good overall picture of what the grammar does. This overview is
necessary for people who want to know about the grammar but have not
already worked on it; this includes grammar writers who join a project
once the grammar is already in existence and people deciding whether
the grammar provides the basic coverage they want. This overview
is better accomplished by top down documentation. The basic idea
is to describe what phenomena the grammar covers and the types of
analyses it provides. A good way to approach this it to start with the
main category and describe what it does (e.g., declaratives, imperatives,
interrogatives, headers) and then provide more detailed coverage of the
individual phenomena (e.g., noun phrases, adjectives, coordination). As
with the documentation in the grammar, the overview documentation
should include examples; providing, possibly simplified, sample analyses
of these examples is also helpful.

One of the major problems with documentation is keeping it up
to date. Ideally, the documentation should be updated everytime a
change is made. Waiting to do major documentation changes all at one
time runs the risk of having some change forgotten. To alleviate these
problems, techniques are being developed to help automatically update
the grammar documentation. (Dipper 2002) has developed a system to
automatically extract rules from the grammar to be included in the top
down documentation; this way, the most up to date version of the rule
is always included in the documentation.

1.6 Summary

Much more could be said about grammar writing, however, we hope to
have addressed some of the main issues with respect to grammar devel-
opment, testing and evaluation. In particular, we covered the following
main topics in this chapter:

» There are two basic types of grammars: deep and shallow.
« Deep grammars:

» Provide grammatical relation information

« Provide parses spanning the entire sentence

+ Are not robust due to limited grammar coverage
- Are often slow (but the situation is improving)

» Shallow grammars:
+ Provide limited (often no) grammatical relation information

September 23, 2002

September 23, 2002

42 / MIr1AM BUuTT AND TRACY HoLLOWAY KING

« Do not connect all subparts of a sentence
- Are robust: every input gets an output
« Are fast

« It is possible to combine deep and shallow parsing techniques to reap
the benefits of both. For example, shallow grammars can preprocess
a string to restrict the possible parses produced by a deep grammar.

+ Testing is extremely important for the maintenance of large scale
grammars. Testing is used to determine whether a grammar has the
intended coverage. Testing should also be done to determine whether
a grammar overgenerates.

« Evaluation involves comparing the grammar to other grammars or
to a specific task.

« Documentation of the grammar is essential for easier debugging and
contributions from multiple grammar writers.

Finally, we would like to emphasize that in addition to its computa-
tional and practical aspects, grammar writing can provide useful input
into theoretical linguistics by testing linguistic theories on a large scale.

1.7 Suggested Reading

In addition to the references cited in the body of this chapter, we rec-
ommend two general works to learn more about grammar writing.

The first is (Jurafsky and Martin 2000). This is a text book on
speech and language processing. It is divided into four parts: words,
syntax, semantics, and pragmatics. The syntax part is of most imme-
diate use to the grammar writer. However, the word part deals with
topics that can immediately interact with the grammar and the se-
mantics and pragmatics parts discuss areas which use the output of
the grammar as input. This book is well written, containing an index,
a detailed bibliography, and nice discussions of the history of the field.

The second is (Butt et al. 1999). This discusses deep grammars, us-
ing the LFG ParGram project as an example. It covers the types of
syntactic data a broad coverage grammar must consider. In addition,
the second part of the book discusses grammar engineering and various
tools that can help the grammar writer. It also contains an index and
references.

Another recent book is (Copestake 2002). This book describes work-
ing with the LKB grammar development platform, which assumes
HPSG as the underlying formalism. The discussion provides detailed
examples, actual grammar writing code and a user manual complete
with screen shots.

September 23, 2002

GRAMMAR WRITING, TESTING, AND EVALUATION / 43

Since grammar writing is a rapidly advancing field, the web is a
natural place to find up to date information. We do not publish web
addresses here since they change frequently. However, as a starting
point we recommend looking at the following institutions’ web pages:

Center for the Study of Language and Information (CSLI)
http://www-csli.stanford.edu/
DFKI (German Research Center for Artificial Intelligence)
http://www.dfki.de/
IMS (Institute for Natural Language Processing) Stuttgart
http://www.ims.uni-stuttgart.de/
Linguistic Grammars Online (LinGO)
http://lingo.stanford.edu/
Palo Alto Research Center’s Natural Language Theory and
Technology group
http://www2.parc.com/istl/groups/nltt/default.html
WordNet
http://www.cogsci.princeton.edu/ wn/
Natural Language Processing at the University of Pennsylvania,
Philadelphia
http://www.cis.upenn.edu/~linc/home.html
Linguistic Data Consortium
http://www.ldc.upenn.edu/

September 23, 2002

References

Abeillé, Anne, and Owen Rambow (ed.). 2000. Tree Adjoining Gram-
mars: Formalisms, Linguistic Analysis, and Processing. Stanford,
California: CSLI Publications.

Abney, Steve. 1996a. Partial Parsing via Finite-State Cascades. Journal
of Natural Language Engineering 2(4):337-344.

Abney, Steve. 1996b. Tagging and Partial Parsing. In Corpus-Based
Methods in Language and Speech, ed. Ken Church, Steve Young, and
Gerrit Bloothooft. Dordrecht. Kluwer Academic Publishers.

Abney, Steven. 1991. Parsing by Chunks. In Principle Based Parsing.
257-278. Dordrecht: Kluwer Academic Publishers.

Alshawi, Hiyan (ed.). 1992. The Core Language Engine. Cambridge,
Massachusetts: The MIT Press.

Asahara, Masayuki, and Yuji Matsumoto. 2000. Extended Models and
Tools for High-performance Part-of-Speech Tagger. In Proceedings
of COLING.

Asudeh, Ash. 2000. A Licensing Theory for Finnish. Unpublished
Manuscript, http://www.stanford.edu/ asudeh/.

Baayen, R.H., R. Piepenbrock, and L. Gulikers. 1995. The CELEX Lex-
ical Database (CD-ROM). Linguistic Data Consortium, University
of Pennsylvania.

Bangalore, Srinivas, Anoop Sarkar, Christine Doran, and Beth-Ann
Hockey. 1998. Grammar & Parser Evaluation in the XTAG Project.
In Proceedings of the Workshop on FEvaluation of Parsing Systems.
Granada, Spain.

Baur, Judith, Fred Oberhauser, and Klaus Netter. 1994. SADAW Ab-
schluflbericht. Technical report. Universitit des Saarlandes and
SIEMENS AG.

45

September 23, 2002

September 23, 2002

46 / A HANDBOOK FOR LANGUAGE ENGINEERS

Beesley, Kenneth, and Lauri Karttunen. 2002. Finite-State Morphol-
ogy: Xerox Tools and Techniques. Cambridge: Cambridge University
Press. To Appear.

Block, Hans Ulrich, and Stefanie Schachtl. 1992. Trace and Unification
Grammar. In Proceedings of the 14th International Conference on
Computational Linguistics, 658-664. Nantes, France, July.

Bod, Rens, and Ronald Kaplan. 1998. A Probablistic Corpus-driven
Model for Lexical-Functional Analysis. In Proceedings of COL-
ING/ACLY8: Joint Meeting of the 36th Annual Meeting of the ACL
and the 17th International Conference on Computational Linguis-
tics. Montréal, Association for Computational Linguistics.

Bod, Rens, Remko Scha, and Khahil Sima’an (ed.). 2002. Introduction
to Data-oriented Parsing. Stanford, California: CSLI Publications.

Brants, Sabine, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and
George Smith. 2002. The TIGER Treebank. In Proceedings of the
Workshop on Treebanks and Linguistic Theories. Sozopol, Bulgaria.
To Appear.

Brants, Thorsten, and Oliver Plaehn. 2000. Interactive Corpus Anno-
tation. In Second International Conference on Language Resources
and Evaluation (LREC-2000). Athens, Greece.

Briscoe, Ted, and John Carroll. 1993. Generalized Probabilistic
LR Parsing of Natural Language (Corpora) with Unification-based
Grammars. Computational Linguistics 19(1):25-59.

Broker, Norbert. 2000. The use of instrumentation in grammar engi-
neering. In COLING 2000 - Proceedings of the 18th International
Conference on Computational Linguistics. Saarbriicken, Germany,
August 2000.

Butt, Miriam, Tracy Holloway King, Maria-Eugenia Nino, and
Frédérique Segond. 1999. A Grammar Writer’s Cookbook. Stanford,
California: CSLI Publications.

Butt, Miriam, Maria-Eugenia Nifio, and Frédérique Segond. 1996. Mul-
tilingual processing of auxiliaries in LFG. In Natural Language Pro-
cessing and Speech Technology: Results of the 3rd KONVENS Con-
ference, ed. Dafydd Gibbon, 111-122. Bielefeld.

Cardie, Claire, and Raymond J. Mooney (ed.). 1999. Machine Learning:
Special Issue on Natural Language Learning. 1-3, February 1999.
Carpenter, Bob. 1998. Type-Logical Semantics. Cambridge, Mas-

sachusetts: The MIT Press.

Carroll, John, Guido Minnen, and Ted Briscoe. 1999. Corpus Annota-
tion for Parser Evaluation. In Proceedings of the EACL Workshop
on Linguistically Interpreted Corpora (LINC). Bergen.

REFERENCES / 47

Chanod, Jean-Pierre, and Pasi Tapanainen. 1996. A Robust Finite-
State Parser for French. In Workshop on Robust Parsing, ESSLLI
’96, 12-16. Prague.

Charniak, Eugene. 1993. Statistical Language Learning. Cambridge,
Massachusetts: The MIT Press.

Chomsky, Noam. 1957. Syntactic Structures. The Hague: Mouton de
Gruyter.

Collins, Chris, and Phil Branigan. 1997. Quotative Inversion. Natural
Language and Linguistic Theory 15:1-41.

Copestake, Ann. 2002. Implementing Typed Feature Structure Gram-
mars. Stanford, California: CSLI Publications.

Copestake, Ann, and Dan Flickinger. 2000. An open-source grammar
development environment and broad-coverage English grammar us-
ing HPSG. In Proceedings of the Second conference on Language
Resources and Evaluation (LREC-2000), 591-600.

Copestake, Ann, Dan Flickinger, Ivan Sag, and Carl Pol-
lard. 1999. Minimal Recursion Semantics: An Introduc-
tion. Unpublished manuscript, Stanford University, http://www-
csli.stanford.edu/~aac/papers.

Copestake, Ann, Alex Lascarides, and Dan Flickinger. 2001. An Alge-
bra for Semantic Construction in Constraint-based Grammars. In
Proceedings of the 39th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2001). Toulouse, France.

Cutting, Doug, Julian Kupiec, Jan Pedersen, and Penelope Sibun. 1992.
A Practical Part-of-Speech Tagger. In Proceedings of the Third Con-
ference on Applied Natural Language Processing. Trento.

Dalrymple, Mary (ed.). 1999. Semantics and Syntaz in Lezical Func-
tional Grammar: The Resource Logic Approach. Cambridge, Mas-
sachusetts: The MIT Press.

Dalrymple, Mary. 2001. Lezical Functional Grammar. New York, New
York: Academic Press.

Dalrymple, Mary, and Ronald M. Kaplan. 2000. Feature Indeterminacy
and Feature Resolution. Language 76(4):759-798.

Dalrymple, Mary, John Lamping, Fernando Pereira, and Vijay
Saraswat. 1999. Quantificaton, Anaphora and Intensionality. In Se-
mantics and Syntax in Lexical Functional Grammar: The Resource
Logic Approach. 39-90. Cambridge, Massachusetts: The MIT Press.

Dipper, Stefanie. 2002. Implementing and Documenting Large-Scale
Grammars: German LFG (Working Title). Doctoral dissertation,
IMS Stuttgart. To Appear.

September 23, 2002

September 23, 2002

48 / A HANDBOOK FOR LANGUAGE ENGINEERS

Eckle, Judith. 1997. Entwicklung eines Simulationsmodells fir
Software-Projekte. Berlin: Logos Verlag.

Eckle, Judith, and Ulrich Heid. 1996. Extracting Raw Material for a
German subcategorization lexicon from newspaper text. In Proceed-
ings of the 4th International Conference on Computational Lexicog-
raphy (COMPLEX ’96). Budapest, Hungary.

Eckle-Kohler, Judith. 1998. Methods for quality assurance in semi-
automatic lexicon acquisition from corpora. In Proceedings of EU-
RALEX ’98. Liege, Belgium.

Egg, Markus. 1998. Wh-questions in Underspecified Minimal Recursion
Semantics. Journal of Semantics 15:37—-82.

Francis, W. Nelson. 1964. A standard sample of present-day English
for use with digital computers. Technical report. Providence, Rhode
Island: Brown University. Report to the U.S. Office of Education on
Cooperative Research Project No. E-007.

Francis, W. Nelson, and Henry Kucera. 1982. Frequency Analysis of
English Usage: Lexicon and Grammar. Houghton Mifflin.

Frank, Anette. 2000. Automatic F-Structure Annotation of Treebank
Trees. In Proceedings of the LFG’00 Conference, ed. Miriam Butt
and Tracy Holloway King. Stanford, California. CSLI On-Line Pub-
lications.

Frank, Anette, Tracy Holloway King, Jonas Kuhn, and John T.
Maxwell III. 2001. Optimality Theory Style Constraint Ranking
in Large-scale LFG Grammars. In Formal and Empirical Issues in
Optimality Theoretic Syntaz, ed. Peter Sells. 367-397. Stanford,
California: CSLI Publications.

Frank, Anette, and Annie Zaenen. 2000. Tense in LFG: Syntax and
Morphology. In Tense and Aspect Now, ed. Hans Kamp and Uwe
Reyle. Tiibingen: Niemeyer.

Johnson, Mark, Stuart Geman, Stephen Canon, Zhiyi Chi, and Stefan
Riezler. 1999. Estimators for Stochastic “Unification-based” Gram-
mars. In Proceedings of the 37th Annual Meeting of the Association
for Computational Linguistics (ACL’99). College Park, Maryland.

Jurafsky, Daniel, and James H. Martin. 2000. Speech and Language
Processing. Upper Saddle River, New Jersey: Prentice Hall.

Kager, René. 1999. Optimality Theory. Cambridge: Cambridge Uni-
versity Press.

Kamp, Hans, and Uwe Reyle. 1993. From Discourse to Logic: An In-
troduction to Modeltheoretic Semantics of Natural Language, Formal
Logic and Discourse Representation. Dordrecht: Kluwer Academic
Publishers.

REFERENCES / 49

Kaplan, Ronald, and Paula Newman. 1997. Lexical Resource Recon-
ciliation in the Xerox Linguistic Environment. In Proceedings of
the ACL Workshop on Computational Environments for Grammar
Development and Engineering. Madrid.

Kaplan, Ronald M. 1987. Three Seductions of Computational Linguis-
tics. In Linguistic Theory and Computer Applications, ed. P. White-
lock, M.M. Wood, H.L. Somers, R. Johnson, and P. Bennett. 149-
188. London: Academic Press. Republished in Formal Issues in
Lexical-Functional Grammar, Mary Dalrymple, Ronald M. Kaplan,
John T. Maxwell III and Annie Zaenen (eds.) 1995. CSLI Publica-
tions.

Karttunen, Lauri, Jean-Pierre Chanod, G. Grefenstette, and Anne
Schiller. 1996. Regular Expressions for Language Engineering. Nat-
uwral Language Engineering 1-24.

King, Tracy Holloway, Stefanie Dipper, Anette Frank, Jonas Kuhn, and
John T. Maxwell III. 2001. Ambiguity Management in Grammar
Writing. Journal of Language and Computation. In Press.

Kuhn, Jonas. 1998. Towards Data-intensive Testing of a Broad-coverage
Grammar. In Computers, Linguistics, and Phonetics between Lan-
guage and Speech, Proceedings of the 4th Conference on Natural
Language Processing, ed. B. Schréder, W. Lenders, W. Hess, and
T. Portele, 43-56. Bonn. Peter Lang.

Kuhn, Jonas. 2001. Formal and Computational Aspects of Optimality-
theoretic Syntaz. Doctoral dissertation, Universitit Stuttgart. Re-
vised version to be published by CSLI Publications.

Lascarides, Alex, and Anne Copestake. 1999. Default Unification in
Constraint-Based Frameworks. Computational Linguistics 25:55—
105.

Maguire, Steve. 1993. Writing Solid Code: Microsoft’s Techniques for
Developing Bug-free C' Programs. Redmond, Washington: Microsoft
Press.

Manning, Christopher. 2000. Probabilistic Head-driven Parsing. Pre-
sented at Carnegie Mellon University; slides available.

Manning, Christopher, and Hinrich Schiitze. 1999. Foundations of Sta-
tistical Natural Language Processing. Cambridge, Massachusetts:
The MIT Press.

Marcus, Mitchell, Grace Kim, Mary Ann Marcinkiewicz, Robert Mac-
Intyre, Ann Bies, Mark Fergueson, Karen Katz, and Britta Schas-
berger. 1994. The Penn Treebank: Annotating Predicate Argument
Structure. In ARPA Human Language Technology Workshop.

September 23, 2002

September 23, 2002

50 / A HANDBOOK FOR LANGUAGE ENGINEERS

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann Marcinkiewicz.
1993. Building a Large Annotated Corpus of English: The Penn
Treebank. Computational Linguistics 19(3):313-330.

McConnell, Steve C. 1996. Rapid Development: Taming Wild Software
Schedules. Redmond, Washington: Microsoft Press.

Morrill, Glyn. 1995. CATLOG: A Compiler and Parser for Type-Logical
Grammar. Dyana-2 Prototype P3.5.

Nakamura, Masami, Katsuteru Maruyama, Takeshi Kawabata, and
Kiyohiro Shikano. 1990. Neural Network Approach to Word Cat-
egory Prediction for English Texts. In Proceedings of the Interna-
tional Conference on Computational Linguistics, ed. Hans Karlgren,
213-218. Helsinki University.

Nerbonne, John. 1998. Linguistic Databases. Stanford, California: CSLI
Publications.

Neumann, Guenter. 2002. Data-driven Approaches to Head-driven
Phrase Structure Grammar. In Introduction to Data-oriented Pars-
ing, ed. Rens Bod, Remko Scha, and Khahil Sima’an. Stanford,
California: CSLI Publications.

Neumann, Guenter, and Dan Flickinger. 2002. HPSG-DOP: Data-
oriented Parsing with HPSG. Unpublished manuscript, presented
at HPSG-2002, Seoul.

Oepen, Stephan, Ezra Callahan, Dan Flickinger, and Christoper D.
Manning. 2002. LinGO Redwoods. A Rich and Dynamic Treebank
for HPSG. In Beyond PARSEVAL. Workshop of the Third LREC
Conference. Las Palmas, Spain.

Oepen, Stephan, and Daniel Flickinger. 1998. Towards Systematic
Grammar Profiling: Testsuite Technology Ten Years After. Jour-
nal of Computer Speech and Language 12:411-436. Special issue on
evaluation.

Oepen, Stephan, Kristina Toutanova, Stuart Shieber, Chris Manning,
Dan Flickinger, and Thorsten Brants. 2002. The LinGO Redwoods
Treebank. Motivation and Preliminary Applications. In Proceedings
of COLING. Taipei, Taiwan.

Porter, M.F. 1980. An Algorithm for Suffix Stripping. Program
14(3):127-130.

Retoré, Christian, and Edward Stabler. 1999. Resource Logics and
Minimalist Grammars. Technical Report 3780. Institute national de
Recherche en Informatique et Automatique (INRIA).

Reyle, Uwe. 1988. Compositional Semantics for LFG. In Natural Lan-
guage Parsing and Linguistic Theories, ed. Uwe Reyle and Christian
Rohrer. Dordrecht: Reidel.

REFERENCES / 51

Reyle, Uwe. 1993. Dealing with ambiguities by underspecification:
Construction, representation and deduction. Journal of Semantics
10:123-179.

Riezler, Stefan, Tracy Holloway King, Dick Crouch, John T. Maxwell
111, Ronald M. Kaplan, and Mark Johnson. 2002. Parsing the Wall
Street Journal using a Lexical-Functional Grammar and Discrimina-
tive Estimation Techniques. In Proceedings of 40th Annual Meeting
of the Association for Computational Linguistics (ACL’02). Univer-
sity of Pennsylvania.

Sadler, Louisa, Josef van Genabith, and Andy Way. 2000. Automatic
F-Structure Annotation from the AP Treebank. In Proceedings of
the LFG’00 Conference, ed. Miriam Butt and Tracy Holloway King.
Stanford, California. CSLI On-Line Publications.

Schabes, Yves, Patrick Paroubek, and the XTAG Research Group.
1997. XTAG User Manual: An X Window Graphical Interface Tool
for Manipulation of Tree-Adjoining Grammars. Department of Com-
puter and Information Science, University of Pennsylvania; available
on-line.

Schiller, Anne. 1996. Multilingual Finite-State Noun Phrase Extrac-
tion. In Extended Finite State Models of Language, ed. Andras Ko-
rnai. Proceedings of the ECAI 96 Workshop.

Schiller, Anne, Simone Teufel, Christine Stéckert, and Christine Thie-
len. 1999. Guidelines fiir das Tagging deutscher Textkorpora mit
STTS (Kleines und grofles Tagset). Technical report. IMS, Univer-
sity of Stuttgart.

Schmid, Helmut. 1994. Part-of-Speech Tagging with Neural Networks.

In Proceedings of the 15th International Conference on Computa-
tional Linguistics (COLING-94). August 1994.

Schmid, Helmut. 1995. Improvements in Part-of-Speech Tagging with
an Application to German. In Proceedings of the ACL SIGDAT-
Workshop. March 1995.

Schmid, Helmut, and Sabine Schulte im Walde. 2000. Robust German
Noun Chunking With a Probabilistic Context-Free Grammar. In
Proceedings of the 18th International Conference on Computational
Linguistics (COLING 2000). Saarbriicken, August 2000.

Schulte im Walde, Sabine, Helmut Schmid, Mats Rooth, Stefan Riezler,
and Detlef Prescher. 2001. Statistical Grammar Models and Lexicon
Acquisition. In Linguistic Form and its Computation, ed. Christian
Rohrer, Antje Rossdeutscher, and Hans Kamp. Stanford, California:
CSLI Publications.

September 23, 2002

September 23, 2002

52 / A HANDBOOK FOR LANGUAGE ENGINEERS

Shieber, Stuart. 1986. An Introduction to Unification-based Approaches
to Grammar. Stanford, California: CSLI Publications.

Spencer, Andrew, and Louisa Sadler. 2001. Syntax as an exponent of
morphological features. In Yearbook of Morphology, ed. Geert Booij.
Dordrecht: Kluwer Academic Publishers.

Stabler, Edward P. 2001. Minimalist Grammars and Recognition. In
Linguistic Form and its Computation, ed. Christian Rohrer, Antje
Rof3deutscher, and Hans Kamp. 327-352. Stanford, California: CSLI
Publications.

Steedman, Mark. 2001. The Syntactic Process. Cambridge, Mas-
sachusetts: The MIT Press.

van Genabith, Josef, and Richard Crouch. 1999a. Dynamic and Un-
dersepcified Semantics for LFG. In Semantics and Syntax in Lexical
Functional Grammar: The Resource Logic Approach, ed. Mary Dal-
rymple. 209-260. Cambridge, Massachusetts: The MIT Press.

van Genabith, Josef, and Richard Crouch. 1999b. How to Glue a Don-
key to an f-structure: Porting a Dynamic Meaning Representation
Language into LFG’s Linear Logic Glue-Language Semantics. In
Computing Meaning, ed. Harry Bunt and Reinhard Muskens. 129-
148. Dordrecht: Kluwer. Studies in Linguistics and Philosophy 73.

Xia, Fei, Martha Palmer, K. Vijay-Shanker, and Joseph Rosenzweig.
1998. Consistent Grammar Development Using Partial-Tree De-
scriptions for Lexicalized Tree-Adjoining Grammar. In TAG+ 4
Workshop. Philadelphia, Pennsylvania, August 1-3, 1998.

