
A Logic for Easy Linking Semantics

Regine Eckardt

Göttingen University, Germany
regine.eckardt@phil.uni-goettingen.de

Abstract. Most semantic frameworks assume that the denotations of
verbs expect their arguments in a certain specific order. In fixed word
order languages, hence, we could say that order codes case marking.
Moreover, all syntax-semantic mappings have to provide a solution for
the fact that DPs can denote individual concepts of (extensional) type
e as well as generalized quantifiers (hhe, ti, ti). The paper presents a
new variant of type logic which o↵ers a lean syntax-semantics interface
for semantic representation in a Montagovian format. Specifically, the
syntax-semantics mapping does not require obligatory quantifier raising
(as Heim+Kratzer, 1998) and does not force the semanticist to make
claims about a fixed underlying order of arguments of the verb. The
latter feature will facilitate semantic research on free word order lan-
guages and semantic research on languages where no syntactic analysis
in a Minimalist framework is as yet available.

1 Linking: Troubles and a Vision

Which syntax feeds semantics? In the present paper, I want to address the
syntax-semantics interface from the back end, so to speak, and propose a new
logical backbone for semantics, one that is better suited to host syntax. I should
stress that this is a service article. I will not criticize, defend or propose any
linguistic analysis but want to present a linking formalism that is easy to handle
and can be adapted for a wide range of potential semantic analyses. Nevertheless,
my work was inspired by linguistic questions which I will briefly review.
Type mismatch problem: It is a common assumption that verbs denote re-
lations between entities. We can use names, indexicals or definite NPs to refer
to entities. Moreover, we can use DPs that denote quantifiers over entities. In
that case, a type mismatch between verb argument and DP denotation has to
be resolved. While some theories endorse the assumption that verbs denote re-
lations between generalized quantifiers, most people prefer to retain the original
logical type of verbs. For these, Heim + Kratzer (1998) develop the by now
standard way to resolve the type mismatch between verb and quantifiers. They
propose an analysis where quantifier raising, coindexing and the interpretation
of traces as variables serves, not only to settle matters of scope, but also as
the standard way to enable semantic composition of verb projection and quan-
tificational DP. Hence, the type mismatch problem is considered as solved by
many semanticists. However, the semantic composition of even a simple sentence

like John likes most Fellini movies requires quantifier raising, interpreted traces,
coindexing, and lambda abstraction.

Order codes argument structure: Standard semantic treatments of English
and other languages assume a fixed (underlying) order of arguments of the verb.
Word order, rather than case marking, is the factor that ensures that each DP or
PP instantiates the correct argument place of the verb. According to this stan-
dard analysis, free word order languages where argument structure is exclusively
determined by case marking should not exist. If a language is suspected to be
of that type (see Haug, 2009 on Ancient Greek), or if a language is not as yet
su�ciently well understood to make claims about word order, semantic analysis
requires to stipulate a basic order of verbal arguments. This common feature
of truth conditional semantics in the Montagovian format can even lead schol-
ars to adopt other semantic frameworks which allow for a more direct impact
of case marking in semantic interpretation. Hence, Montagovian semantics with
interpreted case marking should be an attractive generalization of the standard
framework.

The tacit argument problem: Many analyses propose that the verb has ar-
guments that are not instantiated by overt phrases in the sentence. One example
is provided in recent papers on tense by von Stechow (von Stechow et al., 2009).
His analysis rests on a tense argument of the verb. In order to instantiate this
argument in matrix clauses, he has to assume that there is a tacit temporal PRO,
used as a dummy syntactic object that figures in quantifier raising. PRO leaves a
trace which is interpreted as a time variable and instantiates the temporal argu-
ment of verbs. PRO is not a generalized quantifier, so it can not initiate lambda
abstraction. In non-embedded sentences, von Stechow has to assume that PRO
passes its index to an independent lambda operator and gets deleted afterwards.
While Minimalist syntax allows to delete non-interpretable material, the entire
process looks like an artifact of a specific kind of theory rather than an insight
about the logical structure of language.

The event problem: In a standard Davidsonian analysis, event modifiers can
apply to the event argument of the verb at many levels in syntax. In the standard
fixed word order paradigm, we have to make a claim whether the event argument
should be the first, or the second, etc. or the last argument of the verb. There
is no agreed answer to this question and authors tend to avoid any principled
position. I will discuss two possible options here.

Solution 1: We could claim that the event is an early argument of the verb
such that, for instance, love denotes �e�y�xLOVE(x, y, e). �e gets instantiated
by the trace x

e

of an uninterpretable dummy E-PRO. E-PRO is co-indexed with
x

e

and has to be raised to all positions immediately below an event modifier
MOD. In that position, it has to pass its index to an independent lambda oper-
ator that makes x

e

accessible. After combination of MOD and verb projection,
another trace of PRO instantiates the event argument of the verb, thereby mak-
ing the argument inert until needed the next time. (Note: if there is more than
one event modifier in a sentence, we will need a chain of traces of PRO).

Solution 2: We could alternatively claim that the event is a late argument of
the verb, and our example verb love denotes �y�x�eLOVE(x, y, e). If an event
modifier wants to combine with the verb before the verb has met all its DP
arguments, the modifier has to use some standard procedure to instantiate the
innermost argument of an n-place relation and to reopen all other arguments
after modification. Such modes of combination can certainly be defined. Still, the
resulting analysis again carries the flavor of repairing theory-internal problems
rather than o↵ering insights about the logical structure of language.

It should be pointed out that Kratzer (2002/unpublished) might o↵er a so-
lution: She assumes that each quantificational DP binds the (currently open)
event argument with an existential quantifier, and at the same time introduces a
new, plural event argument that remains accessible and consists of the sum of all
smaller events. Following this proposal, a sentence like Sally fed all chicken in one
hour then means 9E8x(Chicken(x) ! 9eFeed(Sally, x, e) ^ e ⇢ E) ^ ⌧(E) =
1hour) (ignoring further minimality requirements on events). Her analysis is mo-
tivated by the observation that di↵erent event modifiers can take scope below
and above nominal quantifiers in one and the same sentence. Yet, the event prob-
lem originally is not a scope problem. If we want to generalize Kratzer’s solution
to a mechanism where the event parameter is accessible at each syntactic level,
we’d have to claim that any DP (including definite noun phrases, proper names
and other non-scope-taking DPs) existentially binds the event argument of the
verb, combines with the verb, and afterwards introduces a new plural event that
has the existentially bound first event as its part. Hence, a sentence like Sally
fed Prillan will receive the following interpretation (again, leaving minimality
conditions on E aside): 9E(9e(Feed(Sally, Prillan, e) ^ e ⇢ E)) Even though
this may not be wrong in a strictly logical sense, it is at least redundant. Event
semantics would loose much of its original appeal: Events should make semantic
representations elegant and perspicuous, and not redundant and unperspicuous.

In this paper, I will define Linking Logic, a type logic on finite variable
assignments, and Easy Linking Logic which endorses variables that are indexed
with abstract case labels. This will allow us to design Easy Linking Semantics, a
format for semantic analysis and composition that is independent of any specific
grammatical framework and yet draws on earlier Montagovian semantics in a
maximally conservative manner.

2 Linking Logic

In this section, I want to define a type logic which operates on partial variable
assignments.1 All terms t and formula � are interpreted relative to models M

and variable assignments g. Unlike normal logics, however, the interpretation will
only be defined for variable assignment functions which have the free variables
of t or � as their domain. No formula can be evaluated relative to an assignment
which is too ”rich”. As a consequence, variable binding will not always lead
1 An extended version of the paper also includes predicate logic on partial variable

assignments, which might o↵er an easier way into the format.

to interpretable formula. E.g. 9x� will only be interpretable if x occurs free
in �. These properties are not desired or desirable in logics for mathematics
and philosophy in general, perhaps. However, they reflect deep insights about
natural language interpretation. For example, the ban on vacuous quantification
has been proposed as a principle at LF. My analysis implements this ban at an
even deeper level in the logical backbone of semantic analysis.

Following standard semantic practice, I will use the atomic types e, s, t in the
sample system. Simpler and richer systems are possible.
Types:

– e, s, t are atomic types.
– If � and ⌧ are types, then h�, ⌧i is a type.
– Nothing else is a type.

A type logical syntax: A type logic language L on basis of these types consists
of a set of constants for each type ⌧ , and a set of variables for each type ⌧ . In
parallel, I will define the function fr that maps any term to the set of free
variables that occur in that term. The terms in L are defined as follows:

– For each type ⌧ , any constant c of type ⌧ is a term of type ⌧ . The set of free
variables fr(c) := ;.

– For each type ⌧ , any variable v

i

of type ⌧ is a term of type ⌧ . The set of free
variables fr(v

i

) := {v
i

} .
– If A is a term of type h�, ⌧i and B is a term of type �, then A(B) is a term

of type ⌧ . The set of free variables fr(A(B)) := fr(A) [fr(B).
– Logical connectives on type t: If � and are of type t, then � ^ , � _ ,
�! and ¬� are terms of type t. The free variables are defined as follows:
fr(¬�) := fr(�), and fr(�^) = fr(�_) = fr(�!) = fr(�)[fr()-

– If � is a term of type ⌧ , and if fr(�) contains variable v

i

of type � then �v

i

.�

is a term of type h�, ⌧i. The set of free variables fr(�v

i

.�) := fr(�)� {v
i

}.

The present system does not introduce syncategorematic quantification as an
operation on type t terms. Quantificational expressions can enter the system
at the usual places: Determiners relate two sets and denote entities of type
hhe, ti, hhe, ti, ti; the denotations of determiner phrases have the type of gener-
alized quantifiers hhe, ti, ti and the normal universal and existential quantifiers
8,9 will be defined as specific generalized quantifiers below. We will now turn
to interpretation. In the following, I will use the notation g|

A

for the partial
function g⇤ which arises by restricting g to domain A. Hence, g|

fr(�) stands for
g, restricted to the free variables in term �.
Interpretation: Let D

e

, D

s

be domains of entities and worlds, and let D

t

:=
{0, 1} as usual. Let Dh�,⌧i := {f |f : D

�

! D

⌧

} the respective functional do-
mains, and use D to refer to this hierarchy of sets. Let moreover I be a function
which maps all constants of type ⌧ into D

⌧

. The type logical language L is inter-
preted relative to the model M = hD, Ii and partial variable assignments g from
Var into D. Specifically, the interpretation of any term � will only be defined
for assignments g such that dom(g) = fr(�). As before, ; is used for the empty
variable assignment.

– Let c be a constant of type ⌧ . ||c||M,; := I(c).
– Let v

i

be a variable of type ⌧ . Let g be an assignment which is defined on
fr(v

i

) := {v
i

}. Then ||v
i

||M,g := g(v
i

).
– Let A be term of type h�, ⌧i and B a term of type �. Let g be a variable

assigment with dom(g) = fr(A(B)) = fr(A) [fr(B). Then ||A(B)||M,g :=
||A||M,g1(||B||M,g2) where g1 := g restricted to fr(A) and g2 = g restricted
to fr(B).

– Logical connectives on type t: Let � and be of type t. Let moreover g be
any assignment with dom(g) = fr(�) [fr().
||� ^ ||M,g = 1 i↵ ||�||M,g1 = 1 and || ||M,g2 = 1.
||� _ ||M,g = 1 i↵ ||�||M,g1 = 1 or || ||M,g2 = 1.
||�! ||M,g = 1 i↵ ||�||M,g1 = 0 or || ||M,g2 = 1.
||¬�||M,g1 = 1 i↵ ||�||M,g1 = 0
In all cases, g1 := g|

fr(�) and g2 := g|
fr().

– If � is a term of type ⌧ , and if fr(�) contains variable v

i

of type � then �v

i

.�

is a term of type h�, ⌧i. Let g be an assignment with dom(g) = fr(�)�{v
i

}.
Then ||�v

i

.�||M,g := the function which maps all m 2 D

�

to ||�||M,g

0
where

g

0 := g [{hv
i

, mi}.

This concludes the definition of a type logical language with sparse assignments.
Any term in L can exclusively be interpreted with respect to variable assignments
that run exactly on the free variables of the term. While this may look like a
restriction at first sight, the system covers all and exactly the functions served by
variable assignments elsewhere. The mayor di↵erence between sparse assignment
logics and classical logics arises already in the definitions of well-formed terms.
Whereas classical logics allow for vacuous binding, the use of �-abstraction is
restricted to terms where the bound variable actually occurs free in the term.
Let � be a term of type t and let the variable v

i

be in fr(�). Then we will use
the following abbreviations:

9v
i

� := ¬(�v

i

.� = �v.¬(v = v))
8v

i

� := �v

i

� = �v.v = v

The two quantifiers inherit the ban on vacuous binding from �-abstraction. Apart
from that, they have the usual truth conditions. Let us check this for the existen-
tial quantifier 9v

i

�. We know that v

i

2 fr(�) and fr(9v
i

�) = fr(�)�{v
i

}. Given
a model M and assignment g which is defined on fr(�) � {v

i

}, ||9v
i

�||M,g = 1
i↵ there is an extension g⇤ = g [{hv

i

, mi} such that ||�||M,g⇤ = 1. Note that �
is defined for assignment g⇤ because we assumed that v

i

is free in �.

Another operator that will be used later is the subset relation ⇢ of type
hhe, ti, hhe, ti, tii. If A, B are terms of type he, ti, then ||A ⇢ B||M,g is defined for
all g with dom(g) = fr(A) [fr(B).

||A ⇢ B||M,g = 1 i↵ ||A||M,g|fr(A) is the characteristic function of a set A

0 in
M , ||B||M,g|fr(B) is the characteristic function of a set B

0 in M and A

0 ⇢ B

0.
This might be a good place to illustrate that bound variables do not have

any influence on the meaning of terms. Consider the terms �v2.MAN(v2) and
�v9.WALK(v9).

||�v2.MAN(v2) ⇢ �v9.WALK(v9)||M,g = 1

i↵ ||�v2.MAN(v2)||M,g ⇢ ||�v9.WALK(v9)||M,g

,

that is i↵ the set MAN with the characteristic function ||�v2.MAN(v2)||M,g is a
subset of the set WALK with the characteristic function ||�v9.WALK(v9)||M,g.

Although the computation of the two latter characteristic functions operates
via v2 and v9, the same functions would result if we execute the computation via
any other variable. Generally, bound variables can be renamed like in classical
logics (i.e. taking care that the new variable isn’t one bound by an operator inside
the scope of the original binding operator). We can hence freely use renaming
of variables, for instance in order to graphically distinguish saturated arguments
from open arguments of the verb.

3 Easy Linking Semantics

In what follows, I will use an Easy Linking Logic L

link

which deviates from the
systems above in its variables of type e. Apart from ordinary variables, we will
use variables with abstract case labels like nom, acc, dat, gen. These include
labels for prepositional cases like by, for, to, with. We will also assume that if
the same preposition can be used with di↵erent thematic roles, and combines
with the same verb twice, it will count as two di↵erent labels. Hence, with1 in
with great care counts as a di↵erent abstract prepositional case than the with2

in with a hammer in the following sentence.

(1) With great care, Joan opened the box with a hammer.

Finally, I propose to use the labels t, pl, e for times, place and events. Hence,
Var = {v

nom

, v

acc

, v

dat

, ..., e, t, pl, v1, v2, v3, ...}. The exact choice of labels can
be adapted if necessary. Likewise, we can assume that the linking logic L

link

has
more abstract case indices than we actually want to use of some specific semantic
analysis. As before, formulae in L

link

will be interpreted in suitable models M

relative to finite assignments g.
What is the meaning of a verb in Easy Linking Semantics? I assume that

the ”conceptual” content of verbs in English should be captured in a variable-
independent way as an n-place relation between objects, events, and worlds as
usual. Hence, we will use conceptual denotations of verbs like the following:

[[stab]]c = ||�x�y�e�w.STAB(x, y, e, w)||M
[[buy]]c = ||�x�y�z�e�w.BUY(x, y, z, e, w)||M
[[sell]]c = ||�x�y�z�e�w.SELL(x, y, z, e, w)||M
[[kiss]]c = ||�x�y�e�w.KISS(x, y, e, w)||M
[[rain]]c = ||�e�w.RAIN(e, w)||M

These denotations can be viewed as conceptual values of English as well as
German, Dutch, Russian or Japanese verbs, and they are not committed to

any syntax-semantics interface. For the sake of illustration, I decided to use the
Davidsonian format with an event argument for the verb. This is not what Beaver
& Condoravdi propose, but Easy Linking Semantics is particularly attractive if
you want to use events.

When verbs enter into the composition of a sentence, they change to their
linking semantics. Each verbal argument is instantiated with a variable which
carries the abstract case label that corresponds to the phrase that realizes this
argument in sentences. Event and world argument will likewise be instantiated
by specific event- and world variables. The following examples illustrate the step.
I use [[...]] for the linking semantics of words in English, whereas ||...|| evaluates
terms in L

link

in a model M .

[[stab]] �! ||STAB(v
nom

, v

acc

, e, w)||M
[[buy]] �! ||BUY(v

nom

, v

acc

, v

from

, e, w)||M
[[sell]] �! ||SELL(v

nom

, v

acc

, v

to

, e, w)||M
[[kiss]] �! ||KISS(v

nom

, v

acc

, e, w)||M
[[rain]] �! ||RAIN(e, w)||M

These L

link

terms each denote a set of partial assignments from variables with
case labels into the model domain M . In using variables, I make the syntax look
as similar to traditional logic as possible. In using variables with case indices,
I endorse Beaver & Condoravdi’s proposal that linking should be part of the
semantic value of verbs rather than part of a trace mechanism at the syntax-
semantics interface.

3.1 Saturation of arguments

We will assume that DPs carry their abstract case as a syntactic feature. These
cases will enter the semantic composition; hence the denotation of DP

case

is a
tuple which consists of generalized quantifier (the same as in classical semantics)
and its case label. In a sentence like the following, the subject DP Ann hence is
interpreted as h�P.P (ANN), nomi.

(2) Ann coughed

Generally, a DP combines with a sister constituent XP as follows:

[[DP
case

XP]] = h[[DP]], casei � [[XP]]
= [[DP]](�v

case

.)
where is an Llink term that codes the denotation of XP:

[[XP]] = || ||M .

Note that this definition does not depend on any specific term that is used to
represent the meaning of XP. It can be shown that for any two terms 1, 2

which both code the meaning of XP, the result of the above lambda-abstraction
is identical for both terms. The crucial insight is that all ways to code the
meaning of XP must coincide in their free variables, and these always have to

contain v

case

. Equivalent codings will then yield the same logical object for the
same variable assignments; which is all that is needed to ensure identical results
of lambda-abstraction over v

case

. Hence, the result of semantic composition is
well-defined. Let me show an example.

[[Ann]] = h||�P.P (ANN)||M , nomi
[[coughed]] = ||COUGH(v

nom

, e, w)||M
[[Ann coughed]] = ||�P.P (ANN)||M (||�v

nom

.COUGH(v
nom

, e, w)||M)
= ||�v

nom

.COUGH(v
nom

, e, w)(ANN)||M
= ||COUGH(ANN, e, w)||M

The next example shows object quantification. The procedure is very similar to
a Heim-Kratzer treatment though without any need to raise the object DP.

(3) Ann read every book.

[[read]] = ||READ(v
nom

, v

acc

, e, t)||M
[[every book]] = h||�Q

<e,t>

8x(BOOK(x) ! Q(x)||M , acci
[[read every book]]

= ||�Q

<e,t>

8x(BOOK(x) ! Q(x)||M (||�v

acc

.READ(v
nom

, v

acc

, e, t)||M)
= ||8x(BOOK(x) ! �v

acc

.READ(v
nom

, v

acc

, e, t)(x)||M
= ||8x(BOOK(x) ! READ(v

nom

, x, e, t)||M
[[Ann read every book.]]

= h||�P.P (ANN)||M , nomi � ||8x(BOOK(x) ! READ(v
nom

, x, e, t)||M
= ||�P.P (ANN)||M (||�v

nom

.8x(BOOK(x) ! READ(v
nom

, x, e, t)||M)
= ||�v

nom

.8x(BOOK(x) ! READ(v
nom

, x, e, t)(ANN)||M
= ||8x(BOOK(x) ! READ(ANN, x, e, t)||M

The derivation of subject quantifiers is exactly parallel. And, of course, two
quantificational DPs can combine in one sentence. The order of application will
determine scope relations; I leave it to the reader to compute more examples.2

So far, I have not specified how world and event variables should be bound.
As for the world variable, I refer the reader to the treatment of intensionality
as proposed in Fintel & Heim (2007). Actually, their use of partial assignments
as part of their metalanguage is the same as our use of partial assignments
as part of the underlying logic. Hence, the present account is fully compatible
with their intensional apparatus. Unlike the world index, the event parameter
should be bound at some place. We can do so by making use of an existential
closure operator ECL for the variable e at any point. Let � be some L

link

term
that represents the meaning of XP where e occurs free in �. [[ECL XP]] =
||�e.� 6= ;||M = ||9e�||M . As before, existential closure is only defined if e

occurs free in �, and yields the same result for all equivalent terms that could
represent the meaning of XP.

Unlike DP arguments, the Davidsonian event variable is often used in order
to collect several event modifications before it undergoes existential closure. This
can be implemented in the present system by assuming that event modifiers leave
2 Longer draft with more examples available on request.

the event argument as an open variable. The event argument can be bound either
by ECL or by an overt quantifying expression, but not by an event modifier.

(4) Ann read every book carefully

[[read]] = ||READ(v
nom

, v

acc

, e, t)||M
[[carefully]] = h||�P (CAREFUL(e) ^ P (e))||M , ei
[[read carefully]]

= ||�P (CAREFUL(e) ^ P (e))||M (||�e.READ(v
nom

, v

acc

, e, t)||M)
= ||(CAREFUL(e) ^ �e.READ(v

nom

, v

acc

, e, t)(e))||M)
= ||(CAREFUL(e) ^ READ(v

nom

, v

acc

, e, t))||M)
[[ECL read carefully]] = ||9e(CAREFUL(e) ^ READ(v

nom

, v

acc

, e, t))||M)
[[every book]] = h||�Q

<e,t>

8x(BOOK(x) ! Q(x)||M , acci
[[[ECL read carefully] every book]]

= ||�Q

<e,t>

8x(BOOK(x) ! Q(x)||M
(||�v

acc

.9e(CAREFUL(e) ^ READ(v
nom

, v

acc

, e, t))||M)
= ||8x(BOOK(x) ! 9e(CAREFUL(e) ^ READ(v

nom

, x, e, t))||M
[[Ann read every book carefully]]

= h||�P.P (ANN)||M , nomi
�||8x(BOOK(x) ! 9e(CAREFUL(e) ^ READ(v

nom

, x, e, t)))||M
= ||8x(BOOK(x) ! 9e(CAREFUL(e) ^ READ(ANN, x, e, t)))||M

Alternatively, we can apply ECL after combining verb and object DP and get
the following.

||9e(8x(BOOK(x) ! CAREFUL(e) ^ READ(ANN, x, e, t)))||M

Finally, the following example can be treated similarly if we replace ECL by the
event quantifier twice.

(5) Ann twice read every book carefully.

The quantifier twice contributes h||�P9e19e2(e1 6= e2 ^ P (e1) ^ P (e2))||M , ei.
Combination with any XP proceeds by lambda-abstraction over the event ar-
gument in the semantics of XP, and functional application. We can derive the
following two readings.

||9e19e2(e1 6= e2 ^ 8x(BOOK(x) ! CAREFUL(e1) ^ READ(ANN, x, e1, t))
^ 8x(BOOK(x) ! CAREFUL(e2) ^ READ(ANN, x, e2, t)))||M

||8x(BOOK(x) ! 9e19e2(e1 6= e2 ^ CAREFUL(e1) ^ READ(ANN, x, e1, t))
^ CAREFUL(e2) ^ READ(ANN, x, e2, t)))||M

I will leave it at these illustrations of possible ways to use Linking Logic and Easy
Linking Semantics in designing a semantics for fragments of English. The linking
mechanism rests on the idea that clauses are closed domains in which every
argument of the verb occurs only once. In this preliminary version, I will leave it
open whether we will combine Easy Linking Semantics with indices in those cases
where parts of a clause undergo long distance movement (or scope). Likewise,

I will not detail the analysis of passives here. Passivation requires a di↵erent
instantiation in linking semantics value of the verb which reflects the shifted
grammatical roles. So far, I have demonstrated how Easy Linking Semantics
can implement quantification, argument saturation and argument modification
without binding the argument. Beaver & Condoravdi propose that modification
is particularly needed for the time argument of verbs, and develop a particular
way of shifting the value of the time arguments, which is e↵ected by temporal
modifiers. I will not take a stand as to whether this is the best, the only, or just
one way of treating temporal modification but I want to show that it can be
implemented in Easy Linking Semantics, too.

3.2 Functional shifting of arguments

Beaver & Condoravdi make repeated use of operations that shift the value of
variable assignments. For instance, they use functions which map each set of
points of time onto the maximal subset which entirely consists of time points
in July, in order to test what happened in July). These functions serve a spe-
cial purpose in their overall tense semantics which I will not recapitulate here.
However, let us see how values of the time argument of verbs can be shifted by
means of a simple function, e.g. the function which maps a time point ⌧ to ⌧ +1.
I will generally use t for the time argument (variable) and greek letters for time
points.

For the sake of simplicity, I will ommit the Davidsonian event argument in
the present section. This is not to say that the technique is restricted to non-
Davidsonian semantics. Consider the following formula in L

link

which states that
Ann coughed in w at t.

||COUGH(ANN, w, t)||M,g

The formula is defined for all g with the domain {t, w} on times and worlds in
M which are such that their extension to v

nom

which map v

nom

to ANN is in
[[cough]]. Assume that we want to modify this formula in a way that ensures
that Ann coughed at the time point that follows on g(t). If you need a linguistic
counterpart of this modification, you could imagine that it is contributed by
one moment later. We can achieve this modification by lambda-abstracting over
t and applying the resulting function to (t + 1). The computation proceeds as
follows:

1. ||COUGH(ANN, w, t)||M,g = 1 i↵ dom(g) = {t, w} and all extensions of g to
v

nom

which map v

nom

to ANN are in the denotation of cough.
2. ||�t.COUGH(ANN, w, t)||M,g

0
is defined for all assignments where dom(g0) =

{w}. It denotes that function F from time points ⌧ to { 0, 1} which maps ⌧ to
1 exactly if the extension g” := g

0+ht, ⌧i is such that ||COUGH(ANN, w, t)||M,g” =
1.

We will now apply this function to the term t + 1.

1. ||�t.COUGH(ANN, w, t)(t+1)||M,g is defined for our old assignments g with
dom(g) = {t, w}. (Note that t is again free in the new formula, because it
was free in the argument term.)

2. According to our definition of functional application in SALo, we get
||�t.COUGH(ANN, w, t)(t + 1)||M,g

= ||�t.COUGH(ANN, w, t)||M,g1 ||(t + 1)||M,g2

where g1 = g|{w} and g2 = g|{t}. This latter combination is equal to:
3. F(g2(t) + 1), where F is ||�t.COUGH(ANN, w, t)||M,g1 . Given that g2(t) =

g(t), this application yields true exactly if ANN coughs at time g(t)+1. The
application yields false else.

Generalizing this mechanism, we can apply a functional shift to the tense ar-
gument t in a given formula. Like in all other cases, a modifier that involves
the argument will first e↵ect lambda abstraction over that argument. Next, this
lambda term is applied to a term of the form F (t). The argument place remains
open; the formula is still defined for partial variable assignments g which have
the respective variable in their domain (the time variable t in our example).

Functional shifts can be combined. We could decide to apply a function
G(t) := 2t in addition to F (t) = t + 1 (whatever sense this may make on times).
The order of semantic application determines the order in which F and G operate
on the tense argument. Remember that, in the following formulae, �t binds only
the open variable t in �.

||�t.�(t)(F (t))||M = ||�(t + 1)||M

||�t.�(F (t))(G(t))||M = ||�t.�(t + 1)(G(t))||M = ||�(2t + 1)||M

||�t.�(t)(G(t))||M = ||�(2t)||M

||�t.�(G(t))(F (t))||M = ||�t.�(2t)(F (t))||M = ||�(2(t + 1))||M = ||�(2t + 2))||M

Beaver & Condoravdi (2007) use functional composition in order to model stacked
temporal modifiers of the kind in the morning on Saturday for three weeks in
2008. They exploit the fact that the syntactic order of temporal modifiers deter-
mines the order of application in the semantic representation. In their framework,
certain ungrammatical orders of modifiers can be explained by the fact that the
respective composition of functions is undefined or yields empty results.

4 Summary

The present paper spells out a type logic on partial variable assignments which
combines the expressive power of classical type logic with full control over the
open variables of each term. Full control over free variables can be a convenient
feature in many contexts in natural language semantics. In a next step, I pro-
posed to use type logics that use variables which are indexed with abstract case
labels. This type logic can serve as the backbone of semantic analysis, o↵ering
a convenient way to activate and inactivate parameters in the semantic com-
putation. I proposed a specific example of Easy Linking Semantics to illustrate

the potential of the linking mechanism. It allows to define semantic combination
of argument and operator in much the same way as the QR-based mechanism
proposed in Heim & Kratzer (1998), but without quantifier raising at LF. This
is particularly advantageous for verb arguments which do not meet their modi-
fying or saturating phrase at a fixed place in the sentence. Such verb arguments
include the time argument, space argument, but also the event argument, if you
chose to operate in a traditional Davidsonian event semantics (Parsons, 1990).
Easy Linking Semantics is likewise an attractive alternative framework in mod-
eling the semantics of free word order languages. It is also suited to formulate
the semantic component for grammars that do not make use of movement opera-
tions in the same way as GB and Minimalist grammars. Easy Linking Semantics,
finally, is closely related to Linking Semantics as in Beaver & Condoravdi (2007).
It o↵ers a near-type logic way to refer to denotations in their linking structures
and can be generalized to accommodate their event-free semantic fragment of
English (see extended version).

References

Beaver, D. and C. Condoravdi. 2007. On the Logic of Verbal Modification. In M. Aloni,
P. Dekker, F. Roelofson (eds.): Proceedings of the Amsterdam Colloquium 2007: 6–
12.

Davidson, D. 1980[1967]. The Logical Form of Action Sentences. In: Essays on Actions

and Events, pp. 105–122. Clarendon Press, Oxford.
von Fintel, K. and I. Heim. 2007. Intensional Semantics.

http://semantics.uchicago.edu/kennedy/classes/s08/semantics2/vonfintel+heim07.pdf
Haug, Dag, H. Eckho↵, M. Majer and E. Welo. 2009. Breaking down and putting

back together again. Analysis and Synthesis of New Testament Greek. J. of Greek
Linguistics 9(1): 56 - 92.

Heim, I. and A. Kratzer. 1998. Semantics in Generative Grammar. Malden: Blackwell.
Kratzer, A. 2002/in progress. The Event Argument of the Verb. Manuscript, Semantics

Archive.
Parsons, T. 1990. Events in the semantics of English. Boston: MIT Press.
von Stechow, A. and A. Grønn. 2009. The (Non-)Interpretation of Subordinate Tense.

Manuscript presented at Oslo University, Göttingen University.

